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Abstract

For a family of weight functions invariant under a finite reflection group, the boundedness of a maximal
function on the unit sphere is established and used to prove a multiplier theorem for the orthogonal ex-
pansions with respect to the weight function on the unit sphere. Similar results are also established for the
weighted space on the unit ball and on the standard simplex.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to study the maximal function in the weighted spaces on the
unit sphere and the related domains. Let S ={x: |lx|| = 1} be the unit sphere in R*! where
|lx|| denotes the usual Euclidean norm. Let (x, y) denote the usual Euclidean inner product. We
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consider the weighted space on §¢ with respect to the measure h,% dw, where dw is the surface
(Lebesgue) measure on S¢ and the weight function 4, is defined by
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in which R_. is a fixed positive root system of R?*! normalized so that (v, v) =2 forall v € R,
and « is a nonnegative multiplicity function v — k,, defined on R, with the property that k,, = iy
whenever oy, the reflection with respect to the hyperplane perpendicular to u, is conjugate to o,
in the reflection group G generated by the reflections {o,: v € R4 }. The function A, is invariant
under the reflection group G. The simplest example is given by the case G = Z‘ZIH for which &,
is just the product weight function
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he@) =[]l x>0, x=(x1.....x4041). (1.2)
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Denote by a, the normalization constant, a, 1= f g h%(y) dw(y). We consider the weighted

space L? (h,%; $9) of functions on $¢ with the finite norm

1/p
£l p = (aK /If(y)l”hi(y)dw(y)) , 1< p<oo,
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and for p = oo we assume that L is replaced by C(5%), the space of continuous functions on
S9 with the usual uniform norm || f|sc.

The weight function (1.1) was first studied by Dunkl in the context of ~-harmonics, which are
orthogonal polynomials with respect to h,% A homogeneous polynomial is called an /-spherical
harmonics if it is orthogonal to all polynomials of lower degree with respect to the inner product
of Lz(h,%; $?). The theory of h-harmonics is in many ways parallel to that of ordinary harmonics
(see [5]). In particular, many results on the spherical harmonics expansions have been extended
to h-harmonics expansions, see [3-5,8,12,13] and the references therein. Much of the analysis
of h-harmonics depends on the intertwining operator V,. that intertwines between Dunkl opera-
tors, which are a commuting family of first order differential-difference operators, and the usual
partial derivatives. The operator V. is a uniquely determined positive linear operator. To see
the importance of this operator, let HZH (h,%) denote the space of #-harmonics of degree n; the
reproducing kernel of H4*!(h2) can be written in terms of Vj as
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where C,)L‘ is the nth Gegenbauer polynomial, which is orthogonal with respect to the weight
function wy (¢) := (1 — t)*~1/2 on [—1, 1], and

d—1 .
AszK+T with y, = Z Ky. (1.4)
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