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Abstract

We consider the nonlinear stationary Schrödinger equation −�u + V (x)u = f (x,u) in R
N . Here f is

a superlinear, subcritical nonlinearity, and we mainly study the case where both V and f are periodic in x

and 0 belongs to a spectral gap of −� + V . Inspired by previous work of Li et al. (2006) [11] and Pankov
(2005) [13], we develop an approach to find ground state solutions, i.e., nontrivial solutions with least
possible energy. The approach is based on a direct and simple reduction of the indefinite variational problem
to a definite one and gives rise to a new minimax characterization of the corresponding critical value. Our
method works for merely continuous nonlinearities f which are allowed to have weaker asymptotic growth
than usually assumed. For odd f , we obtain infinitely many geometrically distinct solutions. The approach
also yields new existence and multiplicity results for the Dirichlet problem for the same type of equations
in a bounded domain.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we will be concerned with the semilinear Schrödinger equation{−�u + V (x)u = f (x,u),

u ∈ H 1
(
R

N
)
.

(1.1)

Here H 1(RN) is the usual Sobolev space. Our assumptions on V and f stated below imply
that the Schrödinger operator −� + V is selfadjoint and semibounded in L2(RN) and solutions
of (1.1) are critical points of the functional

Φ ∈ C1(H 1(
R

N
)
,R
)
, Φ(u) = 1

2

∫
RN

(|∇u|2 + V (x)u2)dx −
∫

RN

F (x,u)dx, (1.2)

where F is the primitive of f with respect to u. In the last part of the paper, we will also consider
a related variational problem associated with a semilinear elliptic boundary value problem in
a bounded domain. We will be mainly interested in the case where these problems are indefinite
in the sense that 0 is not a local minimum for the corresponding functionals, but some of our
results are new also in the definite case. In the case of the full space problem (1.1) we focus on
periodic data – another setting will be discussed briefly in Section 4 below. For the Schrödinger
operator −� + V we assume:

(S1) V is continuous, 1-periodic in x1, . . . , xN and 0 /∈ σ(−� + V ), the spectrum of −� + V .

Starting with the seminal work of Angenent [2], Coti Zelati and Rabinowitz [6], and Alama
and Li [1], this case has attracted immense attention in the last 15 years. Setting F(x,u) :=∫ u

0 f (x, s) ds, we suppose that f satisfies the following assumptions:

(S2) f is continuous, 1-periodic in x1, . . . , xN and |f (x,u)| � a(1 + |u|p−1) for some a > 0
and p ∈ (2,2∗), where 2∗ := 2N/(N − 2) if N � 3 and 2∗ := +∞ if N = 1 or 2.

(S3) f (x,u) = o(u) uniformly in x as |u| → 0.
(S4) F (x,u)/u2 → ∞ uniformly in x as |u| → ∞.
(S5) u �→ f (x,u)/|u| is strictly increasing on (−∞,0) and on (0,∞).

While (S1)–(S3) are standard assumptions in this context, the following Ambrosetti–Rabinowitz
type superlinearity condition is commonly used in place of (S4) and (S5):

(AR) 0 < ηF(x,u) � f (x,u)u for some η > 2 and all u ∈ R \ {0}, x ∈ R
N .

We recall that (AR) implies F(x,u) � c|u|η > 0 for |u| � 1 and all x ∈ R
N , so it is a stronger

condition than (S4). To state our results, we fix some notation. Let E := H 1(RN). By (S1) there
is an equivalent inner product 〈·,·〉 in E such that

Φ(u) = 1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫
RN

F (x,u)dx,
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