Continuity modulus of stochastic homeomorphism flows for SDEs with non-Lipschitz coefficients ${ }^{\text {/ }}$

Jiagang Ren ${ }^{\text {a }}$, Xicheng Zhang ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ School of Mathematics and Computational Science, Zhongshan University, Guangzhou, Guangdong 510275, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China

Received 14 February 2006; accepted 19 August 2006
Available online 20 September 2006
Communicated by Paul Maliavin

Abstract

Let $X_{t}(x)$ solve the following Itô-type SDE (denoted by EQ. (σ, b, x)) in \mathbb{R}^{d} $$
\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \cdot \mathrm{d} W_{t}+b\left(X_{t}\right) \mathrm{d} t, \quad X_{0}=x \in \mathbb{R}^{d}
$$

Assume that for any $N>0$ and some $C_{N}>0$

$$
|b(x)-b(y)|+\|\nabla \sigma(x)-\nabla \sigma(y)\| \leqslant C_{N}|x-y|\left(\log |x-y|^{-1} \vee 1\right), \quad|x|,|y| \leqslant N
$$

where ∇ denotes the gradient, and the explosion times of EQ. (σ, b, x) and EQ. $(\sigma, \operatorname{tr}(\nabla \sigma \cdot \sigma)-b, x)$ are infinite for each $x \in \mathbb{R}^{d}$. Then we prove that for fixed $t>0, x \mapsto X_{t}^{-1}(x)$ is $\alpha(t)$-order locally Hölder continuous a.s., where $\alpha(t) \in(0,1)$ is exponentially decreasing to zero as the time goes to infinity. Moreover, for almost all ω, the inverse flow $(t, x) \mapsto X_{t}^{-1}(x, \omega)$ is bicontinuous.
© 2006 Elsevier Inc. All rights reserved.
Keywords: Continuity modulus; Homeomorphism flow; SDE; Non-Lipschitz

[^0]
1. Introduction

Consider the Itô-type stochastic differential equation (SDE) on \mathbb{R}^{d} :

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \cdot \mathrm{d} W_{t}+b\left(X_{t}\right) \mathrm{d} t \tag{1}\\
X_{0}=x \in \mathbb{R}^{d}
\end{array}\right.
$$

driven by infinitely many Brownian motions $W:=\left(W^{1}, W^{2}, \ldots\right)$ on some probability space (Ω, \mathcal{F}, P), where $\sigma: \mathbb{R}^{d} \mapsto \mathbb{R}^{d} \times l^{2}$ and $b: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$ are measurable functions. Here l^{2} is the usual Hilbert space of real number sequences, of which the norm is denoted by $\|\cdot\|_{l^{2}}$. In the sequel, the norm in \mathbb{R}^{d} is denoted by $|\cdot|$. This equation will be simply written as EQ. (σ, b, x).

Assume that the coefficients satisfy the following assumptions:
(A1) For some $C_{0}>0$ and any $x, y \in \mathbb{R}^{d}$,

$$
\sum_{i=1}^{d}\left\|\sigma^{i}(x)-\sigma^{i}(y)\right\|_{l^{2}}^{2} \leqslant C_{0}|x-y|^{2}\left(\log |x-y|^{-1} \vee 1\right)
$$

(A2) For some $C_{1}>0$ and any $x, y \in \mathbb{R}^{d}$,

$$
|b(x)-b(y)| \leqslant C_{1}|x-y|\left(\log |x-y|^{-1} \vee 1\right)
$$

Then, there is a unique strong solution $X_{t}(x)$ to Eq. (1) (see [15,5]). Recently, the second named author $[16,17]$ proved that the mappings $\mathbb{R}^{d} \ni x \mapsto X_{t}(x) \in \mathbb{R}^{d}$ are homeomorphisms for all $t>0$, a.s. under (A1) and (A2). In the case of $d=1$, this result has been proved under a slightly stronger assumption by the authors in [10], but a more precise continuity modulus for the mappings $x \mapsto X_{t}(x)$ was given therein. In these works, the main feature is the rapid decreasing of continuity modulus of $X_{t}(x)$ in x as $t \rightarrow+\infty$.

Let $\mathcal{H}\left(\mathbb{R}^{d}\right)$ be the group of homeomorphisms on \mathbb{R}^{d}, which is endowed with the topology of compact uniform convergence of both the mapping and its inverse. Let $\mathcal{H}_{\alpha}\left(\mathbb{R}^{d}\right)$ be the Hölder subspace of $\mathcal{H}\left(\mathbb{R}^{d}\right)$ consisting of the elements g satisfying:

$$
\sup _{x \neq y \in B_{N}} \frac{|g(x)-g(y)|}{|x-y|^{\alpha}}+\sup _{x \neq y \in B_{N}} \frac{\left|g^{-1}(x)-g^{-1}(y)\right|}{|x-y|^{\alpha}}<+\infty \quad \text { for all } N>0
$$

where $\alpha \in(0,1)$ and $B_{N}:=\left\{x \in \mathbb{R}^{d},|x| \leqslant N\right\}$. We remark that $\mathcal{H}_{\alpha}\left(\mathbb{R}^{d}\right)$ is not a group.
One might ask:
Question. Under how less conditions on σ and b, can one guarantee that for fixed $t>0$, the mapping $x \mapsto X_{t}(x)$ admits a Hölder continuous version in $\mathcal{H}_{\alpha(t)}\left(\mathbb{R}^{d}\right)$ for some $\alpha(t) \in(0,1)$ a.s.?

The interest for studying this problem comes from the investigation of Brownian motions on the diffeomorphism groups of the unit circle and the unit disc (cf. [1,2,11,12]). For $t>0$, let $X_{t}^{-1}(x)$ denote the inverse flow of $x \mapsto X_{t}(x)$. Since we have found the continuity modulus of $x \mapsto X_{t}(x)$ in our previous works (see [16, Theorem 4.1]), we only need to study the continuity

https://daneshyari.com/en/article/4592211

Download Persian Version:

https://daneshyari.com/article/4592211

Daneshyari.com

[^0]: t. Work supported by NSF (No. 10301011) of China.

 * Corresponding author.

 E-mail addresses: renjg@mail.sysu.edu.cn (J. Ren), xczhang@hust.edu.cn (X. Zhang).

