

JOURNAL OF Functional Analysis

Journal of Functional Analysis 240 (2006) 429-444

www.elsevier.com/locate/jfa

Self-improving behaviour of inner functions as multipliers [☆]

Konstantin M. Dyakonov a,b

^a Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, E-08007 Barcelona, Spain
^b Steklov Institute of Mathematics, St. Petersburg Branch (POMI), Fontanka 27, St. Petersburg, 191023, Russia

Received 20 December 2005; accepted 24 March 2006

Available online 15 May 2006 Communicated by G. Pisier

Abstract

Let X and Y be two spaces of analytic functions in the disk, with $X \subset Y$. For an inner function θ , it is sometimes true that whenever $f \in X$ and $f\theta \in Y$, the latter product must actually be in X. We discuss this phenomenon for various pairs of (analytic) smoothness classes X and Y. © 2006 Elsevier Inc. All rights reserved.

Keywords: Inner functions; Lipschitz spaces; BMO; Bloch space

1. Introduction and results

A bounded analytic function θ on the disk $\mathbb{D} := \{z \in \mathbb{C}: |z| < 1\}$ is said to be *inner* if $\lim_{r \to 1^-} |\theta(r\zeta)| = 1$ for m-almost all $\zeta \in \mathbb{T}$; here $\mathbb{T} := \partial \mathbb{D}$ is the unit circle and m is the normalized arclength measure on \mathbb{T} . Given an inner function θ , we write $\sigma(\theta)$ for its singular set on \mathbb{T} , also known as the *boundary spectrum* of θ ; thus $\sigma(\theta)$ is the smallest closed set $E \subset \mathbb{T}$ for which θ is analytic across $\mathbb{T} \setminus E$. Equivalently, $\sigma(\theta)$ is formed by the accumulation points of the zeros of θ and the (closed) support of the associated singular measure; see [17, Chapter II].

Because a nontrivial inner function θ is extremely oscillatory near $\sigma(\theta)$, the same should be expected of (and is "usually" true for) the product $f\theta$, where f is a generic analytic function on

E-mail addresses: dyakonov@mat.ub.es, dyakonov@pdmi.ras.ru.

[☆] Supported in part by Grant 02-01-00267 from the Russian Foundation for Fundamental Research, grant MTM2005-08984-C02-02 from El Ministerio de Educación y Ciencia (Spain), grant 2005-SGR-00611 from DURSI (Generalitat de Catalunya), and by the Ramón y Cajal program.

 $\mathbb D$ that is smooth, in a sense, up to $\mathbb T$. In some special cases, however, the product $f\theta$ happens to preserve the nice properties of f. At the same time, it is often true that *multiplication by* θ *either destroys smoothness quite drastically or does not affect it at all.* We may speak then of a certain automatic smoothness enhancement, in the sense that stronger smoothness properties of $f\theta$ can be derived from weaker ones, and this phenomenon will be our main theme.

To be more precise, suppose X and Y are two classes of analytic functions on \mathbb{D} , with $X \subset Y$, and let θ be an inner function. We say that θ is (X,Y)-improving if every function $f \in X$ satisfying $f \theta \in Y$ must actually satisfy $f \theta \in X$. Thus, saying that θ is (X,Y)-improving amounts to the implication

$$(f \in X, f\theta \in Y) \Rightarrow f\theta \in X.$$
 (1.1)

This implication, when true, reflects the self-improving behavior of the multiplication operator $f \mapsto f\theta$ —or rather of the set $\{f\theta\colon f\in X\}\cap Y$ —referred to in the title. In what follows, we shall focus on various specific pairs (X,Y) of "smooth analytic spaces" and describe the θ 's that enjoy the self-improving property (1.1).

Meanwhile, let us pause to make some immediate observations. First of all, given X and Y as above, every inner multiplier of X (i.e., every inner function θ satisfying $\theta X \subset X$) is (X, Y)-improving. In particular, finite Blaschke products are always (X, Y)-improving for a reasonable choice of X and Y. And, of course, all inner functions are (H^p, Y) -improving, where H^p is the classical Hardy space and Y is any space containing it. Secondly, if $X \subset Y_1 \subset Y_2$, then every (X, Y_2) -improving inner function is (X, Y_1) -improving. Thirdly, we mention a generalization of the preceding property: if X, Y and Z are three analytic function spaces with $X \subset Y$, then

every
$$(X, Y)$$
-improving inner function is $(X \cap Z, Y \cap Z)$ -improving. (1.2)

As regards our specific pairs (X, Y), one source of these is the following string of inclusions:

$$A^{\alpha} \subset \mathcal{A} \subset VMOA \subset BMOA \subset \mathcal{B}. \tag{1.3}$$

Here, \mathcal{A} stands for the *disk algebra*, i.e., the set of analytic functions on \mathbb{D} that admit a continuous extension to $\mathbb{D} \cup \mathbb{T}$. By A^{α} , with $0 < \alpha \le 1$, we denote the *Lipschitz space* consisting of those $f \in \mathcal{A}$ which satisfy

$$|f(z_1) - f(z_2)| \le C|z_1 - z_2|^{\alpha} \quad (z_1, z_2 \in \mathbb{D})$$

with some C = C(f) > 0. Further, BMOA (respectively VMOA) is the analytic subspace of BMO(\mathbb{T}) (respectively VMO(\mathbb{T})), the space of functions with *bounded* (respectively *vanishing*) *mean oscillation*; see [17, Chapter VI]. Finally, \mathcal{B} stands for the *Bloch space*, defined as the set of analytic functions f with

$$\sup\{(1-|z|)|f'(z)|: z \in \mathbb{D}\} < \infty.$$

Some other pairs (X, Y) to be studied are obtained by coupling the above classes with Besov spaces; these will be defined later on.

In fact, among the four inclusions in (1.3), only the first and the last—i.e., only the pairs (A^{α}, A) and (BMOA, B)—are of interest to us, since the other two lead to trivial classes of inner functions (representing the two extreme situations), as we shall now explain.

Download English Version:

https://daneshyari.com/en/article/4592242

Download Persian Version:

 $\underline{https://daneshyari.com/article/4592242}$

Daneshyari.com