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Abstract

We introduce the concept of Toeplitz–Kreı̆n–Cotlar triplet on ordered groups and we prove a general
dilation result and a general representation result for the positive definite case.

This general result includes and extends previous generalizations of the Kreı̆n extension theorem, the
Sz.-Nagy and Foias commutant lifting theorem and the generalized Herglotz–Bochner–Weil theorem.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

If Γ is an abelian group and L(H) stands for the space of the bounded linear operators of a
Hilbert space H, an L(H)-valued kernel is a function K :Γ × Γ → L(H).
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The kernel K is said to be positive definite if

n∑
i,j=1

〈
K(xi, yj )hi, hj

〉
H � 0

whenever n is a natural number, x1, . . . , xn ∈ Γ and h1, . . . , hn ∈ H.
The kernel K is called Toeplitz if there exists a function k :Γ → L(H) such that K(x,y) =

k(x − y) for all x, y ∈ Γ .
As it is well known positive definite Toeplitz kernels appear in many problems of analysis.
Also several problems in analysis lead to the consideration of the so-called generalized

Toeplitz kernels, K defined on Z × Z. These kernels satisfy a more general condition than the
Toeplitz one. It is supposed that there exist four functions (kαβ)α,β=1,2 such that

K(x,y) = kαβ(x − y)

whenever (x, y) ∈ Zα ×Zβ , where Z1 = {n ∈ Z: n � 0}, Z2 = {n ∈ Z: n < 0}. A similar situation
occurs for R × R.

This notion of generalized Toeplitz kernels was introduced in [16], where a generalization
of the Herglotz–Bochner theorem for such kernels and applications to the Helson–Szegö theo-
rem were obtained. In other papers further developments were given, an important part of this
development is related with the Sarason interpolation theorem [30], the Sz.-Nagy and Foias com-
mutant lifting theorem [33,34] and the Kreı̆n extension theorem [24] (cf. the papers of Arocena,
Cotlar, Sadosky, Bruzual and Domínguez in the bibliography).

Several extensions and applications of these two theorems have been given in [4,8,9,11,12,14,
15,18,21,22,25,27]. See also [10] for more references.

A partition similar to Z = Z1 ∪ Z2 makes sense in general ordered groups (Γ,+), thus an
analogous notion can be defined in this kind of groups. We are going to introduce a more gen-
eral concept, the notion of Toeplitz–Kreı̆n–Cotlar triplet on ordered groups and we will prove a
general dilation result.

This general dilation result include and extends previous generalizations of the Kreı̆n exten-
sion theorem, the Sz.-Nagy and Foias commutant lifting theorem and the generalized Herglotz–
Bochner–Weil theorem. As a tool, the Arveson extension theorem [7] and the Stinespring repre-
sentation theorem [32] are used.

We also obtain a representation result for weakly measurable Toeplitz–Kreı̆n–Cotlar triplets.
The paper is organized as follows. In Section 2 we give some preliminaries definitions and

results. In Section 3 we give the definition of Toeplitz–Kreı̆n–Cotlar triplets and some related
results. In Section 4 we prove our main result. In Section 5 we obtain our main representation
result. Finally, in Section 6 we obtain some corollaries, which include and extend some previous
results.

2. Preliminaries

Definition 2.1. If Ω is an abelian group, Λ is a subset of Ω and L(H) stands for the space of the
bounded linear operators of a Hilbert space H, a function F :Λ → L(H) is said to be positive
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