
The Journal of Systems and Software 113 (2016) 59–75

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Run-based exception prediction for workflows

Yain-Whar Si a,∗, Kin-Kuan Hoi a, Robert P. Biuk-Aghai a, Simon Fong a, Defu Zhang b

a Department of Computer and Information Science, University of Macau, Macao
b Department of Computer Science, Xiamen University, China

a r t i c l e i n f o

Article history:

Received 31 January 2015

Revised 10 November 2015

Accepted 14 November 2015

Available online 26 November 2015

Keywords:

Workflow

Run

Temporal exception prediction

a b s t r a c t

Events such as iteration of activities or lack of available resources can cause temporal exceptions in busi-

ness processes. Exception prediction can improve the quality of workflow execution since preventive actions

can be taken to reduce the occurrence of exceptions. Thus, it is crucial to provide an accurate and efficient

temporal exception prediction capability for workflow management systems. In this paper, we propose a run-

based exception prediction algorithm to predict temporal exceptions in workflows. The proposed algorithm

is divided into two phases, design-time and run time. At design-time, all possible runs are generated from a

workflow and their estimated execution time and mapping probability are calculated. At run time, temporal

exceptions are predicted by analyzing the runs. Simulation experiments are performed to evaluate the pro-

posed approach using five workflow models having different characteristics. Simulation experiments show

that our approach is efficient and produces good results in prediction accuracy.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A workflow is a collection of tasks organized to achieve busi-

ness goals (Li and Yang 2005; Pan, Tang et al. 2005; Son, Kim et al.

2005; Dumas, Garcıa-Banuelos et al. 2011). Various aspects of work-

flow management systems have been extensively reported in the lit-

erature, such as verifying and optimizing workflows (Cao, Jin et al.

2013). One of the most important issues in workflow management

is the time management for executing its activities. For instance, a

workflow can be designed with a set of tasks to be executed by staff

for delivery of goods. The process begins when an order for goods

is received and ends when the goods are delivered to the customer

and the payment is received. Any delay in completing the process can

lead to financial loss, damaged reputation, or customer dissatisfac-

tion. Therefore, predicting temporal exceptions and taking necessary

measures to avoid delays in execution of the processes can signifi-

cantly reduce costs and in the long run make businesses more com-

petitive.

A Workflow Management System (WFMS) is designed to man-

age the workflows and organize the flow of tasks such that a task

is performed by the right person/application (resource) at the right

time (del Foyo and Silva 2008). Since time plays an important role

in a WFMS, it is necessary to provide time-related constraints, such

as bounded execution durations of tasks and absolute deadlines

∗ Corresponding author. Tel.: +853 8822 4454; fax: +853 8822 2426.

E-mail addresses: fstasp@umac.mo (Y.-W. Si), neti1723@hotmail.com (K.-K. Hoi),

robertb@umac.mo (R.P. Biuk-Aghai), ccfong@umac.mo (S. Fong), dfzhang@xmu.edu.cn

(D. Zhang).

of workflows (Eder and Pichler 2005). However, some unexpected

events can cause time violations as some of the tasks need to be re-

peated or necessary resources are unavailable. A temporal exception

occurs when a time constraint defined at design time is violated dur-

ing run time (Xie, Yu et al. 2009).

Exception prediction can be useful in improving the quality of

workflow execution since preventive actions can be taken to re-

duce the occurrence of exceptions. When a workflow instance is

predicted to have a high probability of violating its deadline con-

straints, a workflow administrator can allocate more resources, as-

signing a higher priority to reduce the likelihood of deadline vio-

lation (Grigori, Casati et al. 2001). Thus, it is crucial to provide an

accurate and efficient temporal exception prediction capability in a

WFMS.

A number of exception prediction methods have been proposed

in the literature (Eder, Gruber et al. 2000; Eder and Pichler 2002;

Leong, Si et al. 2012; Yu, Xie et al. 2013). However, these approaches

do not consider a number of critical issues in the control flow of

workflows. In this paper, we propose a novel temporal exception

prediction method for workflows addressing these control flow as-

pects. Specifically, in our approach, the concept of runs (the com-

plete execution path) of a workflow is used for predicting temporal

exceptions.

1.1. Motivation

Various approaches to workflow exception prediction can be

found in the literature (Eder, Gruber et al. 2000; Eder and Pichler

2002; Leong, Si et al. 2012; Yu, Xie et al. 2013). However, they

http://dx.doi.org/10.1016/j.jss.2015.11.024

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.11.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.11.024&domain=pdf
mailto:fstasp@umac.mo
mailto:neti1723@hotmail.com
mailto:robertb@umac.mo
mailto:ccfong@umac.mo
mailto:dfzhang@xmu.edu.cn
http://dx.doi.org/10.1016/j.jss.2015.11.024


60 Y.-W. Si et al. / The Journal of Systems and Software 113 (2016) 59–75

provide limited support for predicting temporal exceptions. Firstly re-

cent work (Eder, Gruber et al. 2000; Eder and Pichler 2002; Yu, Xie et

al. 2013) conducted exception prediction at a specific time point such

as at the beginning or end of a task. Secondly existing work (Eder,

Gruber et al. 2000; Eder and Pichler 2002; Leong, Si et al. 2012; Yu,

Xie et al. 2013) ignores some situations in parallel control structures.

Specifically, during prediction these algorithms choose a particular

task of one of the branches of the AND gateway and make conclu-

sions based on the result of that prediction. Therefore, simultaneous

predictions at several locations on different branches can produce

inconsistent conclusions. In our approach, a single unified conclu-

sion for prediction at a specific time point is drawn based on the ex-

ception probability of the given workflow instance while taking into

account all AND/XOR branches. Thirdly these algorithms only pro-

vide limited support for iterative control structures which is used to

control the repetitive execution of one or more tasks. In this paper,

we introduce a run-based prediction algorithm to overcome these

problems.

1.2. Contributions

The main contributions of our run-based exception prediction al-

gorithm are as follows:

(1) The proposed algorithm can predict exceptions in workflows

involving parallel control structures while taking into account

all parallel branches.

(2) It can not only predict exceptions at any time point but also

can predict exceptions for workflows that consist of crossing

loops and nested loops.

(3) Our algorithm can be used with additional parameters in ex-

ception prediction, for instance, the number of iterations for

loops and the threshold for exceptions according to users’ pref-

erences.

(4) The proposed algorithm enables finer control of prediction

processes since users are allowed to set thresholds in mak-

ing predictions. Specifically, the proposed run-based exception

prediction algorithm not only considers the choice probabili-

ties in selective control structures, but also the exception prob-

ability of an affected-run, and exception probability of an in-

stance.

2. Literature review

In (Eder, Gruber et al. 2000), researchers proposed an algorithm

for handling alternative execution paths by augmenting each task

node with temporal information. In (Eder, Gruber et al. 2000), two

explicit time constraints are defined; they are lower (lbc) and upper

(ubc) bound constraint, which are used to define the minimum and

maximum time distance between source event and destination event.

Based on these two time constraints, the algorithm computes the ear-

liest point in time a task node can finish when the shortest (longest)

path from start node to the task node is taken, called best case E-value

(worst case E-value); and they compute the latest point in time a task

node has to finish in order to meet the overall deadline when the

shortest (longest) path is taken, called best case L-value (worst case

L-value). The exception prediction is conducted by comparing the lbc

and ubc to E-value and L-value to check whether the time constraints

are violated or not. When a workflow is executing, at a given time

point that a task ends its execution, if the current time is smaller

than or equal to the best-case E-value of the task, it will predict no

exception happened, otherwise exception happened is predicted; if

the current time is greater than or equal to best case L-value of the

task, it will predict an exception happened, otherwise no exception

happened is predicted.

In (Eder and Pichler 2002), the researchers introduced an ap-

proach for enhancing the estimation of duration of workflow and the

likelihood of time constraints violations by constructing a new struc-

ture called duration histogram, which is used to present temporal in-

formation and different probability values for different branches at

XOR-split nodes. A duration histogram of a node is a (n x 2)-matrix,

where each row holds one tuple (p, d), representing the probability p

of the remaining execution time within d between this node and the

end node. In this paper, we improve the workflow graph by attach-

ing the duration histogram to every node; the exception prediction is

conducted by checking the remaining execution time in the duration

histogram for the current task node.

In (Leong, Si et al. 2012), the researchers introduce a critical path

based approach for predicting the occurrence of temporal exceptions

in workflows. In this approach, firstly it generates all possible execu-

tion paths at design time, and secondly it calculates the head deadline

(HD) from the longest path and the earliest completion time (CET)

from the shortest path according to the execution status during run

time, and finally it compares CET to HD to make the prediction: if the

CET is greater than HD, it will predict an exception happened, other-

wise no exception happened.

In (Yu, Xie et al. 2013), the researchers propose an algorithm based

on historical temporal data for handling workflow time exceptions

(deadline constraint violations). In this algorithm, they introduce a

set of time cumulative distribution functions, such as execution time,

queuing time, and total processing time etc. In their approach, a time

probability model of the process is used to model the time indetermi-

nacy of the execution time of tasks. By analyzing the time probabil-

ity model and the workload of the available resources, the algorithm

predicts the temporal exceptions of the workflow.

The related work stated above have some limitations in exception

prediction. First, exceptions cannot be predicted at any time point

(Eder, Gruber et al. 2000; Eder and Pichler 2002; Yu, Xie et al. 2013).

For instance, prediction must be performed at the beginning or end

of a task. Second, no crossing and nested loops are supported (Eder,

Gruber et al. 2000; Eder and Pichler 2002; Yu, Xie et al. 2013). Al-

though it is supported in (Leong, Si et al. 2012), it has limitations in

flexibility, as it predefines a maximum iterative number for each loop.

In our approach, we not only consider crossing and nested loops, but

also allow users to define the probability of iteration. Third, (Eder,

Gruber et al. 2000; Eder and Pichler 2002; Leong, Si et al. 2012; Yu,

Xie et al. 2013) use temporal information of a chosen node to make

the exception prediction. Since they only focus on one specific node,

simultaneous prediction on different nodes can cause inconsistent

conclusions. For instance, simultaneous prediction at different nodes

in AND branches can produce inconclusive results. Therefore, in this

paper, we present an algorithm that takes into account all possible

execution paths of the workflow instance for making a unified con-

clusion. Fourth, (Eder, Gruber et al. 2000; Leong, Si et al. 2012) pro-

vide a direct yes/no answer for exception prediction without con-

sidering probabilities. Therefore, users have no information about

the likelihood of the occurrence of exceptions. Although (Eder and

Pichler 2002; Yu, Xie et al. 2013) provide an approach which uses

probabilities for exception prediction, these values are defined at de-

sign time and they are not updated during run time. Note that some

execution paths defined at design time may not map into any of the

execution paths during actual execution. In these situations, the accu-

racy of the prediction could be affected. In this paper, we propose an

algorithm which calculates the exception probability of an instance

at run time. Table 1 shows the comparison of the above four papers

to our run-based exception prediction algorithm, where S, PS, and NS

denote “Supported”, “Partially-Supported”, and “Not-Supported”.

3. Background

In this section we define the fundamental elements of the work-

flow used in the rest of this paper.



Download English Version:

https://daneshyari.com/en/article/459239

Download Persian Version:

https://daneshyari.com/article/459239

Daneshyari.com

https://daneshyari.com/en/article/459239
https://daneshyari.com/article/459239
https://daneshyari.com

