

JOURNAL OF Functional Analysis

Journal of Functional Analysis 244 (2007) 63-77

www.elsevier.com/locate/jfa

A multiplicity theorem for problems with the *p*-Laplacian

Evgenia H. Papageorgiou, Nikolaos S. Papageorgiou*

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece Received 13 July 2005; accepted 11 November 2006

Communicated by L. Gross

Abstract

We consider a nonlinear elliptic problem driven by the p-Laplacian, with a parameter $\lambda \in \mathbb{R}$ and a nonlinearity exhibiting a superlinear behavior both at zero and at infinity. We show that if the parameter λ is bigger than λ_2 = the second eigenvalue of $(-\Delta_p, W_0^{1,p}(Z))$, then the problem has at least three nontrivial solutions. Our approach combines the method of upper-lower solutions with variational techniques involving the Second Deformation Theorem. The multiplicity result that we prove extends an earlier semilinear (i.e. p=2) result due to Struwe [M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990]. © 2006 Elsevier Inc. All rights reserved.

Keywords: Multiple nontrivial solutions; Superlinear nonlinearity; Upper and lower solutions; Eigenvalues of the *p*-Laplacian; Second deformation theorem

1. Introduction

In this paper we prove a multiplicity theorem for nonlinear elliptic problems driven by the p-Laplacian. So suppose $Z \subseteq \mathbb{R}^N$ is a bounded domain with a C^2 -boundary ∂Z . The problem under consideration is the following:

$$\begin{cases}
-\operatorname{div}(\|Dx(z)\|^{p-2}Dx(z)) = \lambda |x(z)|^{p-2}x(z) - f(z, x(z)) & \text{a.e. on } Z \\
x|_{\partial Z} = 0, \quad \lambda \in \mathbb{R}, \ 1
(1.1)$$

E-mail address: npapg@math.ntua.gr (N.S. Papageorgiou).

^{*} Corresponding author.

We are interested on multiplicity results when the nonlinearity f(z,x) exhibits a "superlinear" behavior both at zero and at $\pm\infty$. In the past this problem was investigated in the case p=2 (semilinear case). First, Ambrosetti, Mancini [2] proved that if $\lambda > \lambda_1$ (λ_1 being the principal eigenvalue of $(-\Delta_p, W_0^{1,p}(Z))$), then the problem has two nontrivial solutions of constant sign (one positive and the other negative). Soon thereafter Struwe [11] improved the result and proved that if $\lambda > \lambda_2$ the problem (1.1) has three nontrivial solutions. Subsequently Ambrosetti, Lupo [1] slightly improved the work of Struwe [11] and also presented an approach based on Morse theory. This, of course, required that the nonlinearity $f(z,\cdot)$ is C^1 . The most general result for the semilinear case can be found in Struwe [12, p. 132], who succeeded in eliminating the differentiability condition on the nonlinearity f and simplified the argument of Ambrosetti, Lupo [1]. We remark, however, that still Struwe [12] requires that the nonlinearity f (which he assumes it to be independent of z), is Lipschitz continuous. When $p \neq 2$ (nonlinear problem), we are not aware of any such multiplicity results for problem (1.1). Here we present such a generalization of the result of Struwe [12].

2. Preliminaries

First let us briefly recall some basic facts about the spectrum of $(-\Delta_p, W_0^{1,p}(Z))$. So we consider the following nonlinear eigenvalue problem:

$$\begin{cases}
-\operatorname{div}(\|Dx(z)\|^{p-2}Dx(z)) = \lambda |x(z)|^{p-2}x(z) & \text{a.e. on } Z \\
x|_{\partial Z} = 0, \quad \lambda \in \mathbb{R}, \ 1
(2.1)$$

The least real number λ for which problem (2.1) has a nontrivial solution is called the first eigenvalue of $(-\Delta_p, W_0^{1,p}(Z))$ and it is denoted by λ_1 . The first eigenvalue λ_1 is positive, isolated and simple (i.e. the corresponding eigenspace is one-dimensional). There is a variational characterization of $\lambda_1 > 0$, via the Rayleigh quotient, i.e.

$$\lambda_1 = \min \left\{ \frac{\|Dx\|_p^p}{\|x\|_p^p} \colon x \in W_0^{1,p}(Z), \ x \neq 0 \right\}.$$
 (2.2)

This minimum is realized at the normalized principal eigenfunction u_1 . Note that if u_1 minimizes the Rayleigh quotient, then so does $|u_1|$ and so it follows that u_1 does not change sign on Z. Thus we may assume that $u_1 \ge 0$. Moreover, from the nonlinear regularity theory (see Lieberman [10]), we know that $u_1 \in C_0^1(\bar{Z})$. In addition, via the nonlinear strict maximum principle of Vazquez [13], we have that $u_1(z) > 0$ for all $z \in Z$ and $\frac{\partial u_1}{\partial n}(z) < 0$ for all $z \in \partial Z$. If we consider the ordered Banach space $C_0^1(\bar{Z}) = \{x \in C^1(\bar{Z}): x(z) = 0 \text{ for all } z \in \partial Z\}$ with positive cone

$$C_0^1(\bar{Z})_+ = \{ x \in C_0^1(\bar{Z}) : x(z) \ge 0 \text{ for all } z \in \bar{Z} \},$$

we know that int $C_0^1(\bar{Z})_+ \neq \emptyset$ and is given by

$$\operatorname{int} C_0^1(\bar{Z})_+ = \left\{ x \in C_0^1(\bar{Z})_+ \colon x(z) > 0 \text{ for all } z \in Z \text{ and } \frac{\partial x}{\partial n}(z) < 0 \text{ for all } z \in \partial Z \right\}.$$

Therefore $u_1 \in \operatorname{int} C_0^1(\bar{Z})_+$.

Download English Version:

https://daneshyari.com/en/article/4592410

Download Persian Version:

https://daneshyari.com/article/4592410

<u>Daneshyari.com</u>