
The Journal of Systems and Software 113 (2016) 257–274

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Cost-effective strategies for the regression testing of database

applications: Case study and lessons learned

Erik Rogstad a,∗, Lionel Briand b

a Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway
b University of Luxembourg, SnT Centre, 4, rue Alphonse Weicker, L-2721 Luxembourg, Luxembourg

a r t i c l e i n f o

Article history:

Received 8 July 2015

Revised 27 October 2015

Accepted 3 December 2015

Available online 15 December 2015

Keywords:

Regression testing

Database applications

Classification tree modeling

a b s t r a c t

Testing and, more specifically, the regression testing of database applications is highly challenging and costly.

One can rely on production data or generate synthetic data, for example based on combinatorial techniques or

operational profiles. Both approaches have drawbacks and advantages. Automating testing with production

data is impractical and combinatorial test suites might not be representative of system operations.

In this paper, based on a large scale case study in a representative development environment, we explore

the cost and effectiveness of various approaches and their combination for the regression testing of database

applications, based on production data and synthetic data generated through classification tree models of the

input domain.

The results confirm that combinatorial test suite specifications bear little relation to test suite specifications

derived from the system operational profile. Nevertheless, combinatorial testing strategies are effective, both

in terms of the number of regression faults discovered but also, more surprisingly, in terms of the importance

of these faults. However, our study also shows that relying solely on synthesized test data derived from test

models could lead to important faults slipping to production. Thus, we recommend that testing on production

data and combinatorial testing be combined to achieve optimal results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In large database applications, constructing synthetic test data is

often deemed too time-consuming because of the large number of

data dependencies in a typical relational database. Thus, a common

strategy when testing database applications is to rely on produc-

tion data for testing, i.e. data from the system operation. However,

available production data may not satisfy all the requirements of the

test plan (test specifications), thus forcing the testers to manipulate

and/or extend the production data to make it adequate. Both the task

of identifying appropriate test data and subsequently manipulating it

if it does not exactly fit the needs, is a tedious process for the testers.

The use of production data nevertheless remains common practice

due to the lack of alternatives.

In order to achieve effective test automation, for example to sup-

port regression testing, we would like to rely on test suites conform-

ing to clear test strategies, i.e. devised in a structured and system-

atic manner, to ensure predictability of test results both in terms of

∗ Corresponding author. Tel.: +4745600663.

E-mail address: erikrog@simula.no (E. Rogstad).

coverage and fault revealing power. Thus, automatically generating

synthetic test data becomes necessary. Yet again, when generating

test data, a wide range of possibilities opens up. Rather than find-

ing appropriate production data, the challenge shifts to limiting the

amount of test data to generate to a proper sized test suite match-

ing the available test budget, while still ensuring predictable quality.

Combinatorial testing is an attractive strategy for generating compact

n-way test suite specifications (Dustin, 2002; Hedayat et al., 1999),

and consequently a natural starting point for test data generation.

Classification tree modeling is a common approach to combinato-

rial test design (Grochtmann and Grimm, 1993), in which the input

domain of the system under test is modeled as a classification tree,

which in turn is used to generate a combinatorial test suite specifica-

tion (Lehmann and Wegener, 2000).

However, based on our experience, combinatorial test suite spec-

ifications do not necessarily align well with system usage and the

benefits in terms of risk reduction resulting from testing are there-

fore unclear. In other words, when your test model is fairly complex,

a compact combinatorial test suite may mostly consist of test cases

that are rarely or never executed in the real operation of the system.

To ensure that tests match meaningful and representative executions

of the system, we can analyze the operational profile of some of the

http://dx.doi.org/10.1016/j.jss.2015.12.003

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.12.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.12.003&domain=pdf
mailto:erikrog@simula.no
http://dx.doi.org/10.1016/j.jss.2015.12.003


258 E. Rogstad, L. Briand / The Journal of Systems and Software 113 (2016) 257–274

functional areas of the system under test, on which basis we can gen-

erate test suite specifications directly aligned with system usage. Al-

ternatively, we can use the operational profile to weigh the properties

in our combinatorial models (classification trees), which is then used

to generate more representative combinatorial test suites.

In this paper we present an empirical investigation, in a real

and representative database application development environment,

of various strategies for the selection and generation of test data for

database applications. We assess production data and generate syn-

thetic test data following various combinatorial strategies based on

classification tree models. We focus on system level regression test-

ing and run actual regression tests to compare the fault detection rate

of each strategy. Our case study focuses on the following questions:

• What combinatorial test coverage can be expected from produc-

tion data? It is important to understand the scope of production

data if they are to be used for testing, and also help determine

whether additional data need to be synthesized for achieving sat-

isfactory testing.
• How effective are synthesized combinatorial regression test

suites, based on pair-wise and three-wise coverage, at assessing

and eliminating the risks of failure? Combinatorial test suites tend

to be compact, as they target model coverage with a small set of

test cases. It is then interesting to explore to what extent the com-

pact test suites are representative of the usage of the system being

tested. This will determine whether they are able to detect rele-

vant faults, that is faults that are likely to manifest themselves in

practice and present significant risks.
• Can operational profile analysis help guide the synthesis of more

effective regression tests? One important question is whether we

can use an operational profile analysis to weigh model property

values, in order to generate more representative combinatorial

test suites. As an alternative to combinatorial testing, we must

also investigate whether synthesized data based on an opera-

tional profile is an effective regression test strategy, or a comple-

ment to combinatorial testing.
• How do test strategies compare, in terms of their ability to detect

faults, during regression testing and when generated according

to: (1) Synthesized combinatorial test data (pair-wise and three-

wise), (2) The operational profile of the system, (3) Synthesized

pair-wise test data weighed based on the operational profile, and

(4) production data. Whether to test on production data or syn-

thesized data often comes down to what is more practical in a

given context. However, assessing both alternatives and compar-

ing them is interesting to understand the consequences of choos-

ing one over the other or combining them. Furthermore, it is in-

teresting to investigate whether synthesized data based on the

operational profile can detect similar faults as tests derived from

production data.

The remainder of the paper is organized as follows: Section 2 pro-

vides information about the industrial context of our work, along

with the background and motivation for our case study. Section 3 out-

lines a practical approach to generate test data, based on classification

tree models, and the matching of production data against these mod-

els. The design of the case study is presented in Section 4, along with

empirical results, discussions, and threats to validity. Related work is

reported in Section 5, before drawing conclusions in Section 6.

2. Background and motivation

The Norwegian Tax Department maintains several large database

systems. For example, the Norwegian tax accounting system, SOFIE,

serves more than 3,000 end users (taxation officers) and handle

yearly tax revenues of approximately 600 Billion NOK. Common to

these systems is that they process large amounts of data, and accord-

ingly the business logic of the systems is organized into batch pro-

grams to ensure efficient data processing. Batch programs typically

process large sets of input data and run to completion without human

intervention. This makes them suitable for automated transaction

handling, and the batches are thereby often scheduled to run peri-

odically. As being a part of the Tax Department portfolio, the systems

are subject to changes in taxation laws, along with usual maintenance

activities, thus causing continuous changes to the batch programs. It

is vital for the tax department to avoid releasing faults upon changes

and maintain system quality to preserve taxpayers’ confidence. Nev-

ertheless, regression faults in the batch programs have been a strug-

gle throughout the years. Further, the batch programs process large

amounts of data, spanning a wide variety of possible test cases, which

makes manual testing inadequate to support quality assurance in the

context of frequent changes.

2.1. Automated regression testing

To address some of the issues mentioned above, we proposed a

partly automated regression test procedure and tool (DART) tailored

to database applications (Rogstad et al., 2011). It compares execu-

tions of a changed version of the program against the original ver-

sion of the program and identifies deviations, that is differences in

the way the database is manipulated between the two executions. In

each test execution, the database manipulations are logged according

to a specification by the tester indicating the tables and columns to

monitor. The database manipulations from each execution are com-

pared across system versions to produce a set of deviations, which

indicate either correct changes or regression faults.

The strength of this approach is that it provides the ability to ver-

ify the entire set of test data executed by a batch automatically. As

an example, lets say we execute a batch running the tax calculation

for 10,000 taxpayers, each constituting a test case. Manually verify-

ing 10,000 tests is far beyond what a tester can realistically handle.

Therefore, one would have to pick out a small sample to analyze based

on qualified guesses whereas the rest of the 10,000 tax calculations

would remain unattended and pose substantial risk to the system re-

lease. However, with the regression test procedure suggested above

for database applications, all the 10,000 tax calculations will auto-

matically be compared against a previous execution to separate the

test cases that deviated from the ones that did not.

2.2. Observations regarding test data

Throughout initial phases of applying the proposed methodology

for automated regression testing, we made a number of observations

regarding test data, that formed the basis for the work presented in

this paper. Our case study is further elaborated in Section 4, whereas

the remainder of this section will elaborate on the observations mo-

tivating it.

2.2.1. Testing using production data

In a system like SOFIE, like in many other database applications,

there are vast amounts of data available from the production envi-

ronment of the system. Consequently, the testing of SOFIE has tradi-

tionally been heavily relying on the use of anonymized production

data. In practice, the test data is made available by making a copy of

the production database for testing purposes and then reusing input

files from the production environment when running tests.

This was our starting point for the regression testing of the batch

programs. However, initial regression tests on production data indi-

cated significant redundancy in the data and very unpredictable test

coverage. Redundancy was visible when conducting the deviation

analysis, as many test cases executed the system in a similar way and

triggered the same fault, thus causing many redundant deviations to

inspect. The unpredictable test coverage became evident when we

ran the same regression test (same batch program versions) using



Download English Version:

https://daneshyari.com/en/article/459249

Download Persian Version:

https://daneshyari.com/article/459249

Daneshyari.com

https://daneshyari.com/en/article/459249
https://daneshyari.com/article/459249
https://daneshyari.com

