
The Journal of Systems and Software 113 (2016) 296–308

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Automatically classifying software changes via discriminative topic

model: Supporting multi-category and cross-project

Meng Yan b, Ying Fu b, Xiaohong Zhang a,b,c,∗, Dan Yang b, Ling Xu b, Jeffrey D. Kymer b

a Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, Chongqing 400044, PR China
b School of Software Engineering, Chongqing University, Huxi Town, Shapingba, Chongqing 401331, PR China
c State Key laboratory of Coal Mine Disaster Dynamics and Control, Chongqing 400044, PR China

a r t i c l e i n f o

Article history:

Received 14 November 2014

Revised 11 November 2015

Accepted 7 December 2015

Available online 22 December 2015

Keywords:

Software change classification

Multi-category change

Discriminative topic model

a b s t r a c t

Accurate classification of software changes as corrective, adaptive and perfective can enhance software

decision making activities. However, a major challenge which remains is how to automatically classify

multi-category changes. This paper presents a discriminative Probability Latent Semantic Analysis (DPLSA)

model with a novel initialization method which initializes the word distributions for different topics us-

ing labeled samples. This method creates a one-to-one correspondence between the discovered topics

and the change categories. As a result, the discriminative semantic representation of the software change

messages whose largest topic entry directly corresponds to the category label of the change message

which is directly used to perform single-category and multi-category change classification. In the evalu-

ation on five open source projects, the experimental results show that the proposed approach achieves a

more accurate performance than the four baseline methods. Especially with the multi-category classifica-

tion task which improves the recall rate. Moreover, the different projects share the same vocabulary and

the estimated model so that DPLSA is well applicable to cross-project software change message analysis.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

To aid further software analysis, it is necessary to classify soft-

ware change as corrective, adaptive, or perfective. The proportion

of each category provides a valuable window into the software de-

velopment practices. Project managers need to be well informed

to enhance their decision making process. For example, if 90% of

the changes in a project are corrective, then it may mean that now

is the time to intensify the quality assurance work like code re-

views and unit tests. It has been applied to many important soft-

ware engineering activities, such as software maintenance (Mockus

and Votta, 2000) and defect prediction (Kim et al., 2008). Various

change cues have been used for classifying software changes, for

example, change author (Hindle et al., 2009a), change file (Alali

et al., 2008), change size (Hattori and Lanza, 2008) and change

messages (Hassan, 2008). In particular, change messages are at-

tractive for software change classification because it does not re-

quire retrieving and then analyzing the source code of the change.

Moreover, retrieving only the message is significantly less expen-

sive, and allows for efficient browsing and analysis of the changes

and their constituent revisions. These characteristics are useful to

∗ Corresponding author. Tel.: +86 15923238399.

E-mail address: xhongz@cqu.edu.cn (X. Zhang).

anyone who needs to quickly categorize or filter out irrelevant

revisions (Hindle et al., 2009a). However, to the best of our

knowledge, there has been little work classifying a multi-category

change; but, there have been researches that have found this to be

a realistic activity (Fu et al., 2015; Mauczka et al., 2012). In this

work, we aim to accurately understand the category distribution

by classifying both single-category and multi-category changes.

Researchers have proposed a variety of approaches for retriev-

ing keywords in change messages to classifying software changes

(Hassan, 2008; Mauczka et al., 2012; Mockus and Votta, 2000).

Despite the great success achieved, there are some unsolved is-

sues remaining in this research, such as the ambiguity coming

from subjective interpretations of the relationship between rele-

vant words and categories of changes. A similar work has demon-

strated success in automatic software change classification by us-

ing semi-supervised Latent Dirichlet Allocation (LDA) (Fu et al.,

2015). We noticed that both Mauczka et al. (2012) and Fu et al.

(2015) found that single-category changes are not necessarily re-

alistic. A major challenge which remains is how to automatically

classify multi-category changes. To address this challenge, we fo-

cus on automatically classifying software changes by developing a

novel discriminative Probability Latent Semantic Analysis, referred

to DPLSA. The main difference from Fu et al. (2015) is that the

three topics in this work have a one-to-one correspondence to

http://dx.doi.org/10.1016/j.jss.2015.12.019

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.12.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.12.019&domain=pdf
mailto:xhongz@cqu.edu.cn
http://dx.doi.org/10.1016/j.jss.2015.12.019


M. Yan et al. / The Journal of Systems and Software 113 (2016) 296–308 297

corrective, adaptive and perfective software change categories, such

that the change message categorization comes down to finding the

single maximum entry (single-category) or multi maximum en-

tries (multi-category) in the topic-document distributions, and we

provide a method of cross-project classification without the need

of re-learning. In particular, we motivated our investigation with

three research questions:

RQ1 What is a better way to evaluate the relationship between

relevant words and the categories of software changes? A

change message often is a short description written by de-

velopers and the VCS does not enforce how to write a

change message. Consequently, change messages are non-

structured free format text. There are many salient words

relevant to categories in change messages, such as “fix”,

“create” and “correct”. The relationship between the relevant

words and the categories is the key issue in the classification

step. Mauczka et al. (2012) assigned weights to the salient

words which is a subjective interpretation. We wish to per-

form a cross-project training using labeled messages to au-

tomatically determine a probabilistic relationship.

RQ2 How well do the discovered topics correspond to software

changes with multi-category? A change message indicates

a particular maintenance task, such as fixing a defect or

adding a new feature, despite the fact that there exists a

few change messages, which indicate multiple purposes as

Mauczka et al. (2012) and Fu et al. (2015) presented in their

validation step. We wish to create a one-to-one correspon-

dence between discovered topics and categories by using the

discriminative topic model. After that, the discovered topics

can be directly used to perform the classification task in-

cluding single-category and multi-category.

RQ3 What is an accurate way to automatically obtain the dis-

tribution of software changes? A project manager would be

interested in knowing the distribution of categories of soft-

ware changes. We wish to quantify a more accurate distribu-

tion by classifying both single-category and multi-category

changes.

We address our research questions by proposing a topic mod-

eling method. It is inspired by the recent success of topic mod-

eling in mining software repositories (Grant et al., 2012; Hindle

et al., 2011; Hindle et al., 2009b; Pollock et al., 2013; Thomas,

2012). Topic models, such as Probability Latent Semantic Analy-

sis (Hofmann, 2001), Latent Dirichlet Allocation (Blei et al., 2003),

Correlated Topic Models (Lafferty and Blei, 2006) and their vari-

ants and extensions, have been applied to various software engi-

neering research questions, such as software evolution and soft-

ware defect prediction (Chen et al., 2012; Gethers and Poshyvanyk,

2010; Grant et al., 2012). Despite the great success achieved, there

are some unsolved, important issues that still remain in this line

of research. First, in the original topic models, some words which

are fully connected to different topics are noisy and irrelevant for

model construction. Disconnecting the irrelevant words is help-

ful for generating a sparse representation over different topics of

a document (Chien and Chang, 2014). In fact, the sparsity of the

topic-document distribution (i.e. with a small number of dominant

entries and most zero or close to zero entries) is helpful for di-

rectly performing the classification task. Second, a critical issue in

understanding the latent topics uncovered from software reposi-

tories is how many topics should be sought (Grant et al., 2013).

There is not a one-to-one correspondence between topics and cat-

egory labels in the traditional models. The topic-document distri-

butions are only used to decide which topics are important for a

particular document and cannot determine which category a par-

ticular document belongs to. This is also the limitation in solving

the multi-category problem.

The process of the proposed DPLSA is divided into three phases

as illustrated in Fig. 1. We select single category change messages

as our training datasets and use the semantically salient words de-

rived from the work of Mauczka et al. (2012) to form the vocab-

ulary as illustrated in Fig. 1(a). Moreover, the training messages

from the same category are employed to initialize the category-

conditional probability of a specific word conditioned on the cor-

responding topic. Hence, semantically salient words are forced to

connect to the topic partially with a dominated probability. Such

that, it creates a one-to-one correspondence between topics and

categories. Due to the special initialization approach, the sparsity

is achieved for the corresponding words to the corresponding top-

ics (Chien and Chang, 2014). Finally, the topic representation of a

test sample is sparse and its maximum entry directly determines

the category to which the test sample belongs because the topic

is the same as the category. When multiple topic entries of a

change message reach the same maximum, the change message is

regarded as a multi-purpose one.

In our experiments, change messages of five open source

projects are extracted by using the CVSAnalY (Robles et al., 2004)

tool. The change message is normalized by WordNet (Miller, 1995)

and Gate (Cunningham et al., 2002). The five different projects

in the experiment shared the same vocabulary and the estimated

model, and moreover the sparse probabilistic representation of

software change messages were directly used to assign software

changes into Swanson’s maintenance categories (Swanson, 1976)

by finding the maximum topic entry. The proposed approach is

proved capable of classifying changes well through manual vali-

dation performed by professional developers. Especially, the multi-

category change classification task that improves the recall rate. In

summary, the contributions of this paper can be summarized as

follows:

• We explore the discovered word-topic distributions learned

from labeled change messages and find they provide an ordered

probabilistic relationship between relevant words and the cate-

gories of software changes. As a result, this overcomes the am-

biguity coming from manually subjective weights.
• We explore the discovered topic-document distributions and

find a one-to-one correspondence between these discovered

topics and change categories. The maximum topic entry directly

determines the category to which a change belongs. If multiple

topic entries reach the same maximum, this indicates a change

is a multi-category one.
• We evaluate our approach on five projects and compare the

performance with four baselines. The results indicate that our

performing multi-category classification improves the classifi-

cation performance. As a result, this work provides a more ac-

curate distribution of each category in a project. Besides, we

provide a method of cross-project software change classification

without the need for re-learning. The different projects share

the same vocabulary and the estimated model.

The structure of this paper is as follows. In Section 2 we

present the related work of our research, including previous soft-

ware change classification methods, software change classification

rules, topic modeling in mining software repositories (MSR), and

PLSA. We describe our research preparation, models and tech-

niques in Section 3. In Sections 4 and 5, we provide the experiment

design, results and validation. Then at last in Sections 6 and 7, we

discuss the potential threats to our findings and draw a conclusion.

2. Related work

In this section, we discuss related literature from several as-

pects: previous software change classification methods, software



Download English Version:

https://daneshyari.com/en/article/459251

Download Persian Version:

https://daneshyari.com/article/459251

Daneshyari.com

https://daneshyari.com/en/article/459251
https://daneshyari.com/article/459251
https://daneshyari.com

