
The Journal of Systems and Software 113 (2016) 324–336

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

What to expect of predicates: An empirical analysis of predicates in

real world programs

Vinicius H.S. Durelli a,d,∗, Jeff Offutt b, Nan Li b, Marcio E. Delamaro a, Jin Guo c, Zengshu Shi c,
Xinge Ai c

a Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, Brazil
b Software Engineering, George Mason University, Fairfax, VA, USA
c School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
d Faculdade Campo Limpo Paulista, São Paulo, Brasil

a r t i c l e i n f o

Article history:

Received 15 April 2013

Revised 1 October 2015

Accepted 14 December 2015

Available online 21 December 2015

Keywords:

Logic-based test criteria

Active clause coverage (ACC) criteria

Modified condition-decision coverage

(MCDC) test criterion

a b s t r a c t

One source of complexity in programs is logic expressions, i.e., predicates. Predicates define much of the

functional behavior of the software. Many logic-based test criteria have been developed, including the ac-

tive clause coverage (ACC) criteria and the modified condition/decision coverage (MCDC). The MCDC/ACC

criteria is viewed as being expensive, which motivated us to evaluate the cost of applying these crite-

ria using a basic proxy: the number of clauses. We looked at the frequency and percentage of pred-

icates in 63 Java programs. Moreover, we also compared these Java programs with three programs in

the safety-critical domain, in which logic-basic testing is often used. Although around 99% of the predi-

cates within Java programs contain at most three clauses, there is a positive linear correlation between

overall measures of size and the number of predicates that have more than three clauses. Furthermore,

safety-critical C/C++ programs have more complex predicates than non-safety-critical programs. However,

similar to the predicates in non-safety-critical programs, most predicates in safety-critical programs have

up to three clauses. We conclude that non-safety-critical and safety-critical programs do not have many

complex predicates. Thus, MCDC/ACC is only needed on a small fraction of the predicates.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Logic predicates are ubiquitous in a myriad of software artifacts,

including requirements, design models, test scripts, and source

code. They are fundamental to the software’s behavior, and define

the possible flows of control through the program. The heart of any

decision or branch is the logic predicate. If the predicate is wrong,

the software behaves incorrectly. And the more subtle the mistake

in the predicate is, the harder it is to find the mistake during test-

ing and fix it during debugging.

Given this, it is not surprising that testers often use predi-

cates to design tests. This is commonly called logic-based testing

(Ammann and Offutt, 2008) and is applied during unit testing by

designing tests from decisions in the code, and during integration

and system testing by designing tests from decisions in the de-

sign or the requirements. Testers design tests to cause every pred-

∗ Corresponding author. Tel.: +55 1633738628.

E-mail addresses: vinicius.durelli@gmail.com, durelli@icmc.usp.br (V.H.S. Durelli),

offutt@gmu.edu (J. Offutt), nli1@gmu.edu (N. Li), delamaro@icmc.usp.br (M.E. Dela-

maro), jguo_scce@home.swjtu.edu.cn (J. Guo), shizengshu@126.com

(Z. Shi), axg1967@sina.com (X. Ai).

icate to become true and false (called predicate coverage – PC

(Ammann and Offutt, 2008), decision coverage – DC (Myers et al.,

2011), and branch coverage – BC), to cause every clause within ev-

ery predicate to become true and false (clause coverage – CC

and Condition Coverage – CC Myers et al., 2011), to cause every

predicate to take on all of its possible truth values (combinato-

rial coverage – CoC), and to cause every clause to become true
and false while the rest of the clauses have values to ensure the

clause under test controls the value of the predicate (modified con-

dition, decision coverage – MCDC and active clause coverage – ACC).

The US Federal Aviation Administration (FAA) has explicitly rec-

ognized the importance of logic-based testing by requiring that

MCDC (Chilenski and Miller, 1994) be used to certify safety crit-

ical parts of the avionics software in commercial aircraft (RTCA-

DO-178B, 1992).

Essentially, ACC is equivalent to MCDC. It turns out that

MCDC’s definition is ambiguous. The definition is not specific about

the key notion of determination, the conditions under which a

clause dictates the outcome of a predicate. This ambiguity has

led to confusion in how to interpret MCDC. Resolving this am-

biguity leads to three different interpretations of ACC: General

ACC (GACC), Correlated ACC (CACC), and Restricted ACC (RACC)

http://dx.doi.org/10.1016/j.jss.2015.12.022

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.12.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.12.022&domain=pdf
mailto:vinicius.durelli@gmail.com
mailto:durelli@icmc.usp.br
mailto:offutt@gmu.edu
mailto:nli1@gmu.edu
mailto:delamaro@icmc.usp.br
mailto:jguo_scce@home.swjtu.edu.cn
mailto:shizengshu@126.com
mailto:axg1967@sina.com
http://dx.doi.org/10.1016/j.jss.2015.12.022

V.H.S. Durelli et al. / The Journal of Systems and Software 113 (2016) 324–336 325

Ammann et al. (2003). So, in this study, when we refer to ACC

we are referring to all different interpretations of the criterion:

GACC, CACC, and RACC. Both PC and CC require just two tests per

predicate. ACC criteria and MCDC are more complicated to com-

pute, making it harder to create quality test design tools and more

time consuming to design tests by hand. ACC and MCDC also cre-

ate up to 2n tests per predicate with n independent clauses, mak-

ing it more expensive in terms of number of tests. But ACC and

MCDC tests become more effective at finding faults as the number

of clauses in the predicate increases.

If a predicate has a single clause, ACC, MCDC, and CC collapse

to simply PC. If a predicate has two or three clauses, CoC is sim-

pler to compute and not significantly more expensive (needing 2n

tests per predicate). However, as n grows, CoC quickly becomes

prohibitively expensive, thus ACC is needed.

At the same time, designers and programmers tend to prefer

simpler predicates, probably because it is easier to get these pred-

icates correct. In addition, object-oriented (OO) programs tend to

have fewer predicates than procedural programs because OO pro-

grams encode much of the conditional behavior in polymorphic

method calls. Another factor that might contribute to simpler pred-

icates in OO programs is the common use of refactoring (Fowler

et al., 1999) to simplify the conditional expressions. This leaves

a crucial question: how many clauses do predicates in real pro-

grams (“in the wild”) have? If large predicates never occur, then

more complicated logic-based test criteria such as ACC are not nec-

essary. If they are very common, then high-end logic-based test

criteria may be essential to effective testing. By effective testing,

we mean applying cost-effective techniques with reasonable high

fault-finding effectiveness. Some testers have criticized logic-based

test criteria on the basis of its cost. However, the cost is low for

small predicates, and only goes up when predicates have many

clauses. Therefore, the question of the cost of logic-based test cri-

teria is central to deciding their applicability.

Although predicates are used in many software artifacts (in-

cluding control-flow graphs, finite state machines, UML diagrams,

requirements, and source), and tests are designed from all of these

artifacts, this research focuses on predicates derived from program

source. The FAA requires that tests be generated from the require-

ments, but evaluated in terms of their MCDC coverage on the

source (RTCA-DO-178B, 1992). This paper is concerned with the

latter step, using predicates in code to either design or evaluate

tests.

Our goal is to evaluate the cost of applying logic-based crite-

ria. The cost of using a logic-based test criterion can be evaluated

in several ways: (i) the number of tests, (ii) the cost of evaluat-

ing whether a set of tests satisfies the criterion, and (iii) the cost

of generating tests to satisfy a criterion. We examined the pred-

icates from 63 non-safety-critical Java programs, and asked two

questions:

• How many clauses are in real predicates?
• Is the number of clauses per predicate correlated with the size

of programs; that is, are complex predicates more likely to ap-

pear in large programs?

The overarching motivation for this research is to provide a

greater understanding of the predicates found in real-world pro-

grams. Although previous papers Chilenski (2001); Kernighan and

Plauger (1981); Chilenski and Miller (1994); Booch (1987) have an-

alyzed the complexity of predicates, this paper presents the re-

sults of a large scale empirical study in a completely new light:

besides looking at the frequency, percentage, and density of pred-

icates with varying sizes, we also investigated the relationship be-

tween overall measures of size (number of lines of code and source

files) and the frequency of predicates. To our knowledge, this is the

largest and most rigorous analysis to date on predicates complex-

ity. Previous studies have been much smaller, and are based on old

programs in languages that are not currently used. This research

updates our knowledge in the area by providing a significantly

larger sample of evidence that corroborates previous research on

predicates complexity. In addition, this paper compares non-safety-

critical software with safety-critical software from the high-speed

railway signaling domain.

The primary contribution of this research is a post-hoc em-

pirical analysis of programs ranging from 423 to 629,114 lines of

code investigating the characteristics of over 400,000 predicates.

The results indicate that the vast majority of predicates have less

than four clauses. We found a positive relationship between over-

all measures of size and the frequency of more complex predicates.

Given that logic-based criteria are more often used in the safety

critical domain, we also compared several Java programs to safety-

critical C/C++ programs. According to our results, safety-critical

systems have more predicates containing at least four clauses than

non-safety-critical programs. Nevertheless, about 95% of the predi-

cates in safety-critical systems have up to three clauses.

The remainder of this paper is organized as follows. Section 2

provides background on logic-based criteria, presents definitions

for the terms and concepts in this paper, and discusses the cost

of applying these test criteria. Section 3 describes the experimen-

tal design. Section 4 presents results, statistical analysis, compares

Java and safety-critical systems, and discusses threats to validity.

Section 5 compares our results with previous studies. Section 6

presents concluding remarks.

2. Background

This section introduces several definitions used in the rest of

the paper. Most are taken from the textbook by Ammann and Of-

futt (Ammann and Offutt, 2008). The result of a predicate evalua-

tion is a boolean value (true or false) (Ammann et al., 2003).

Predicates may have boolean and non-boolean variables. Within

predicates, relational operators (>, <, ≥, ≤, =, and �=) are used to

compare values and logical operators (∧, ∨, ⊕, →, and ↔) define

the internal structure. An example predicate is the logical expres-

sion (r ≥ s) ∧ t, where r and s are non-booleans and t is a boolean.

Predicates are comprised of one or more boolean-valued

clauses, which are connected by logical operators (Ammann et al.,

2003; Ammann and Offutt, 2008). For example, the predicate (r ≥
s) ∧ t contains two clauses, namely, a relational expression (r ≥ s)

and a boolean variable t.

Predicates and clauses are used in several logic expression cov-

erage criteria. The simplest is PC. Let P be a collection of predicates

with clauses C. For each predicate p ∈ P, Cp is the set of clauses in

p. PC can be defined as follows (Ammann and Offutt, 2008):

Definition 1 (PC). For each p ∈ P, there are two test requirements:

p evaluates to true and p evaluates to false.

For the example (r ≥ s) ∧ t, two tests that satisfy PC are {r =
6, s = 4, t = true} and {r = 5, s = 10, t = true}. PC requires exactly

two tests per predicate. A drawback is that it does not fully exer-

cise individual clauses. For example, the clause t evaluates to true
in both of these tests.

From a pragmatic testing standpoint, it is advantageous to eval-

uate the overall effect of each clause on a predicate. The simplest

way is to evaluate predicates with all possible truth values. How-

ever, this creates 2n tests, which gets prohibitively expensive very

quickly. This thinking has led to several logic-based criteria to exer-

cise clauses with a reasonable number of tests. These criteria draw

on the idea of making clauses “active.”

Download English Version:

https://daneshyari.com/en/article/459253

Download Persian Version:

https://daneshyari.com/article/459253

Daneshyari.com

https://daneshyari.com/en/article/459253
https://daneshyari.com/article/459253
https://daneshyari.com

