
The Journal of Systems and Software 113 (2016) 337–361

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Exploring context-sensitive data flow analysis for early vulnerability

detection

Luciano Sampaio∗, Alessandro Garcia

Pontifical Catholic University of Rio de Janeiro – PUC-Rio, Rua Marquês de São Vicente, 225, 22453-900 Rio de Janeiro, Brazil

a r t i c l e i n f o

Article history:

Received 6 April 2015

Revised 10 October 2015

Accepted 7 December 2015

Available online 18 December 2015

Keywords:

Early detection

Data flow analysis

Secure programming

a b s t r a c t

Secure programming is the practice of writing programs that are resistant to attacks by malicious peo-

ple or programs. Programmers of secure software have to be continuously aware of security vulnerabili-

ties when writing their program statements. In order to improve programmers’ awareness, static analysis

techniques have been devised to find vulnerabilities in the source code. However, most of these tech-

niques are built to encourage vulnerability detection a posteriori, only when developers have already

fully produced (and compiled) one or more modules of a program. Therefore, this approach, also known

as late detection, does not support secure programming but rather encourages posterior security analysis.

The lateness of vulnerability detection is also influenced by the high rate of false positives yielded by

pattern matching, the underlying mechanism used by existing static analysis techniques. The goal of this

paper is twofold. First, we propose to perform continuous detection of security vulnerabilities while the

developer is editing each program statement, also known as early detection. Early detection can lever-

age his knowledge on the context of the code being created, contrary to late detection when developers

struggle to recall and fix the intricacies of the vulnerable code they produced from hours to weeks ago.

Second, we explore context-sensitive data flow analysis (DFA) for improving vulnerability detection and

mitigate the limitations of pattern matching. DFA might be suitable for finding if an object has a vulner-

able path. To this end, we have implemented a proof-of-concept Eclipse plugin for continuous DFA-based

detection of vulnerabilities in Java programs. We also performed two empirical studies based on several

industry-strength systems to evaluate if the code security can be improved through DFA and early vul-

nerability detection. Our studies confirmed that: (i) the use of context-sensitive DFA significantly reduces

the rate of false positives when compared to existing techniques, without being detrimental to the de-

tector performance, and (ii) early detection improves the awareness among developers and encourages

programmers to fix security vulnerabilities promptly.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Secure programming is the practice of writing software sys-

tems that are resistant to attacks by malicious people or programs

(Apple, 2013). In order to promote secure programming, develop-

ers have to be continuously aware of security vulnerabilities when

writing their program statements. They need to be prepared to

continuously perform actions for preventing and removing vulner-

abilities from their programs. Security vulnerability (or simply vul-

nerability) is a flaw within a software system that can be exploited

to allow an attacker to reduce the system’s information assurance

(Organization for Internet Safety, 2004). An attacker is a person or

application that intends to cause damage to a software system. By

∗ Corresponding author. Tel./fax: +55 21 3527 1500.

E-mail addresses: lsampaio@inf.puc-rio.br, lsampaioweb@gmail.com

(L. Sampaio), afgarcia@inf.puc-rio.br (A. Garcia).

exploiting a security vulnerability, an attacker takes advantage of

this vulnerability, typically for malicious purposes, such as stealing

information or causing damage to a computer system.

In the context of this paper, we are particularly concerned with

security vulnerabilities introduced by programmers when adding

or editing code statements. Unfortunately, existing software devel-

opment environments – such as Eclipse,1 NetBeans2 and others –

often do not offer the means to make programmers aware they

are writing insecure code. Therefore, if a company or a developer

wants support for performing secure programming, they have to

use additional external tools, such as: IBM Appscan (IBM, 2001),

Lapse+ (Livshits, 2006) and others. However, these solutions fre-

quently do not fit properly on the development workflow. They ei-

ther are not integrated into the development environments or do

1 https://eclipse.org/home/index.php.
2 https://netbeans.org/.

http://dx.doi.org/10.1016/j.jss.2015.12.021

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.12.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.12.021&domain=pdf
mailto:lsampaio@inf.puc-rio.br
mailto:lsampaioweb@gmail.com
mailto:afgarcia@inf.puc-rio.br
http://dx.doi.org/10.1016/j.jss.2015.12.021


338 L. Sampaio, A. Garcia / The Journal of Systems and Software 113 (2016) 337–361

not detect the vulnerabilities exactly when they are added into the

source code. Consequently, they only support “a posteriori” secu-

rity analysis in the source code rather than supporting actual se-

cure programming. Thus, both novice and experienced developers

are not encouraged to detect and remove security vulnerabilities in

the code they are editing.

Developers should be aware of emerging security vulnerabili-

ties as they write their program statements. If a team of devel-

opers wants to perform secure programming on all of its projects,

at least the most common security vulnerabilities should be han-

dled by the programmer who is adding or editing the code, leaving

only the more complex ones to actual security specialists. In order

to achieve secure programming, developers should receive tooling

support to continuously detect and remove security vulnerabilities

in their code edition context. Otherwise, developers might be un-

conscious about the security vulnerabilities emerging in their code.

Ideally, they should be detected and fixed before the programmer’s

code is committed into the project’s repository. If done afterwards,

developers might spend hours, days or weeks to find out and fix

vulnerabilities in their code (Baca et al., 2008).

In fact, there is recent trend to investigate solutions that

support early detection of some implementation problems, such

as modularity problems (Albuquerque et al., 2014) and exception

handling flaws (Barbosa et al., 2012). However, there is limited

knowledge on how to specifically support early detection of secu-

rity vulnerabilities in programs. Zhu (2012) was the only author to

recently address this problem. They created a prototype solution,

called ASIDE (Application Security plugin for Integrated Devel-

opment Environment), that performs early detection of security

vulnerabilities in source code. However, the use of ASIDE might

result in a high amount of false positives as it is strictly based on

a low-accurate technique called pattern matching. False positive is

the incorrect indication of the presence of a vulnerability (IBM,

2008). As described by Nadeem et al. (2012), the occurrence of

several false positives discourages the use of existing static analysis

solutions for security vulnerability detection. Unfortunately, ac-

cording to Nadeem et al. (2012), other existing solutions (not only

ASIDE; Zhu, 2012) result in a high rate of false positives. Most of

these solutions are also based on pattern matching and, therefore,

would be hard to tailor them to support early vulnerability detec-

tion. Unfortunately, the use of early detection without employing

a high accuracy technique would not be sufficient for achieving

secure programming. Developers would be discouraged to write

secure programs if they often become frustrated by continuously

treating a high amount of false positives when editing their code.

In order to address the aforementioned problems, we propose

the combination of two ideas on this paper. First, we propose to

support a change from the default behavior of late detection to

early detection. We believe this change improves the support for

secure programming. Second, we propose new heuristics to find

security vulnerabilities using a technique named context-sensitive

data flow analysis (Hammer et al., 2006) instead of using low-

accurate techniques, such as pattern matching. We expect the use

of context-sensitive data flow analysis (DFA) will decrease the

rate of false positives yielded by existing solutions. Consequently,

the improvement on the accuracy detection will likely to en-

courage developers to detect and remove vulnerabilities in their

source code. We defined a suite of DFA-based heuristics to support

detection of vulnerabilities that occur on web applications. These

vulnerabilities stem from program inputs and outputs that are not

properly validated.

After our detection heuristics were created, we designed and

implemented a prototype. This prototype enabled us to verify if

and to what extent our detection heuristics could decrease the

rate of false positives when compared to other automated tech-

niques. Although our heuristics are can be implemented to the

context of several programming languages, the first (and current)

version of our prototype only provides support for the Java3 pro-

gramming language. This choice was driven by the fact that Java is

one of the most popular programming languages (Zeichick, 2012).

The prototype is a plugin for the Eclipse4 IDE (integrated develop-

ment environment), which is the most popular IDE used for the

Java programming language (Geer, 2005). The plugin, called ESVD

– Early Security Vulnerability Detector, can be downloaded from

the Eclipse Marketplace (Sampaio and Garcia, 2014).

Finally, we design and execute two empirical evaluations.

They are aimed to improve our understanding about the use of

early vulnerability detection based on data flow analysis. The first

evaluation intends to verify if developers receiving continuous

detection support (i.e. early detection) could produce more secure

code than developers receiving support afterwards, i.e. only at

the end (late detection) of their programming session. The second

evaluation was specifically targeted at measuring the accuracy

of our prototype (using data flow analysis) compared to other

existing solutions.

The remainder of this paper is structured as follows.

Section 2 presents the theoretical background required to under-

stand the main concepts of this paper. This section also describes

the main existing studies about the subject discussed on this pa-

per. Section 3 describes the heuristics created to find security vul-

nerabilities in the source code. This section also describes the com-

ponents, which compose our algorithm. It also discusses which

vulnerabilities are supported by our heuristics, how these vulnera-

bilities occur in the source code and what is necessary to remove

them. Section 4 presents the software architecture of our imple-

mented solution. Section 5 discusses the empirical evaluations to

explicitly address our research questions (Section 5.1). Sections 6

and 7 describe in full detail the experiments that were performed

during our study. Finally, Section 8 concludes this paper, by show-

ing the main contributions made and discussing some possibilities

and future research directions.

2. Background and related work

This section presents the background required to understand

the main concepts of this paper. It also discusses related work.

2.1. Security terminology

We used the commonly referenced taxonomy from Tsipenyuk

et al. (2005) and their definitions are presented next. Input - Data

provided by the user of a software system or by another appli-

cation. Malicious input – input that is intended to cause harm to

the application or to other users. Untrusted/Unvalidated input –

input that has not been compared to a range of expected values

or has not removed malicious data from its content to ensure it

is safe to use. Trusted/Validated/Sanitized input - Input that has

been compared to a range of expected values and has removed (if

any) malicious data from its content to ensure it is safe to use. En-

code/Escape input – the process of converting some input, e.g. a

sequence of characters (letters, numbers, punctuation, and certain

symbols) into a specialized digital format, such as HTML tags. De-

code/Unescape input – the process of converting an encoded input

back into its original sequence of characters. Security vulnerability

– security vulnerabilities (or simply vulnerabilities) is a flaw within

a software system that can be exploited to allow an attacker to re-

duce the system’s information assurance (Organization for Internet

Safety, 2004). In other words, an attacker can exploit a program

3 https://www.oracle.com/java/.
4 https://www.eclipse.org.

https://www.oracle.com/java/
https://www.eclipse.org


Download	English	Version:

https://daneshyari.com/en/article/459254

Download	Persian	Version:

https://daneshyari.com/article/459254

Daneshyari.com

https://daneshyari.com/en/article/459254
https://daneshyari.com/article/459254
https://daneshyari.com/

