
The Journal of Systems and Software 113 (2016) 362–380

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A survey on software architectural assumptions

Chen Yang a,b, Peng Liang a,∗, Paris Avgeriou b

a State Key Lab of Software Engineering, School of Computer Science, Wuhan University, 430072 Wuhan, China
b Department of Mathematics and Computing Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands

a r t i c l e i n f o

Article history:

Received 1 July 2015

Revised 3 December 2015

Accepted 11 December 2015

Available online 19 December 2015

Keywords:

Software architecture

Architectural assumption

Industrial survey

a b s t r a c t

Context: Managing architectural assumptions (AA) during the software lifecycle, as an important type of

architecture knowledge, is critical to the success of projects. However, little empirical evidence exists on

the understanding, identification, and recording of AA from the practitioners’ perspective.

Objective: We investigated the current situation on (1) how practitioners understand AA and its impor-

tance, and (2) whether and how practitioners identify and record AA in software development.

Method: A web-based survey was conducted with 112 practitioners, who use Chinese as native language

and are engaged in software development in China.

Results: The main findings are: (1) AA are important in both software architecting and development.

However, practitioners understand AA in different ways; (2) only a few respondents identified and

recorded AA in their projects, and very few approaches and tools were used for identifying and recording

AA; (3) the lack of specific approaches and tools is the major challenge (reason) of (not) identifying and

recording AA.

Conclusions: The results emphasize the need for a widely accepted understanding of the AA concept in

software development, and specific approaches, tools, and guidelines to support AA identification and

recording.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The concept of assumption in software engineering is not

new. Various types of assumptions have been investigated in

the software engineering literature, such as requirement assump-

tions (Haley et al., 2006), architectural assumptions (Roeller et al.,

2006), and code-level assumptions (Lehman and Ramil, 2001),

which focus on different aspects of the software development life-

cycle. Stakeholders (e.g., developers, architects, and maintainers)

frequently make assumptions during their daily work for various

purposes (e.g., about the interpretation of requirements or charac-

teristics of input data) (Lewis et al., 2004).

This paper focuses on architectural assumptions (AA1), the as-

sumptions concerning architecture (a detailed discussion of AA

definition based on the survey results can be found in Section 5.1).

Software Architecture (SA) represents “the fundamental concepts or

properties of a system in its environment embodied in its elements,

relationships, and in the principles of its design and evolution” (ISO.

ISO/IEC/IEEE Std 42010-2011, 2011). In SA, AA is an important type

∗ Corresponding author. Tel.: +86 27 68776137; fax: +86 27 68776027.

E-mail address: pliangeng@gmail.com, liangp@whu.edu.cn (P. Liang).
1 AA is singular as well as plural based on the context in which it is used.

of architectural knowledge (Roeller et al., 2006, Van Landuyt and

Joosen, 2014). We define AA as “a statement about uncertain archi-

tectural knowledge”. For example, an architect made an educated

guess that the number of users (visitors) of the system would be

around 1 million per day. Apparently, this number is only an es-

timation; the architect cannot be sure about the accurate number

until the system is deployed and operated. Therefore this assump-

tion is architectural knowledge that contains uncertainty and will

remain an assumption until this uncertainty is eliminated. This pa-

per aims to refine and elaborate the definition of AA according to

the practitioners’ perspective on AA.

Architecture assumptions, like other kinds of assumptions in

software engineering, have a dynamic nature: the context of the

project (e.g., business environment) as well as the software it-

self changes over time, making formerly valid assumptions invalid,

which results in unsatisfactory systems (Lewis et al., 2004). For ex-

ample, the architect assumed that it is not necessary to consider

the external security of the system (such as broken access control

or cross-site scripting), because the system would be deployed in

an (secure-enough) internal environment. However, during the de-

velopment, the requirement changes in a way that external access

is necessary. In this case, the initial assumption that “external se-

curity is not a concern” is invalidated. Of course, an assumption

can also be invalid in the first place. This is often the case due to

http://dx.doi.org/10.1016/j.jss.2015.12.016

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.12.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.12.016&domain=pdf
mailto:pliangeng@gmail.com
mailto:liangp@whu.edu.cn
http://dx.doi.org/10.1016/j.jss.2015.12.016


C. Yang et al. / The Journal of Systems and Software 113 (2016) 362–380 363

insufficient information while making an assumption. For example,

the architect may assume that Java is a suitable language for the

project without being aware of the developers’ low proficiency in

Java.

AA usually remain implicit and undocumented during architect-

ing (Roeller et al., 2006) and this is a major issue because of their

dynamic nature. Without explicitly identifying and recording AA,

they tend to vaporize, leaving the development team unaware of

which AA had been made, their implications on the architecture,

and their status (i.e., whether they are still valid or have become

invalid). Vaporization of AA in a project leads to two problems:

(1) Architectural misunderstanding and mismatch. For example,

stakeholders may misunderstand the architectural design deci-

sions (ADDs), because they are not aware of the AA. Further-

more, AA incompatible with architecture design elements may

result in architectural mismatch, e.g., mismatch between com-

ponents or connectors (Garlan et al., 2009). Subsequently this

may lead to design violations and low architecture quality.

(2) The development team needs to spend considerable time and

effort to understand and maintain the architecture.

Another problem related to AA is that practitioners may not

have a common understanding of the AA concept, leading to in-

consistent treatment of AA. For example, one stakeholder may con-

sider an AA as a requirement, while others may treat the same AA

as an ADD (Roeller et al., 2006). The different treatments of AA

can result in misunderstandings in the communication between

various stakeholders, which may impede the development of the

project.

Little empirical research has been conducted in the field of AA,

especially in AA identification and recording. To this end, we con-

ducted a web-based survey with 112 practitioners, who use Chi-

nese as native language (Chinese respondents are easily accessible

to two of the researchers of this survey) and are engaged in soft-

ware development in China, from a number of different industries

and application domains. The objectives of the survey are the fol-

lowing:

(1) To identify the practitioners’ perception of AA and the impor-

tance of AA in software development. We aimed at exploring

how practitioners understood the AA concept without biasing

them, so we did not use our own definition of AA in the sur-

vey. Note that “the AA term” is not the same as “the AA con-

cept”. A term is a label used to express a concept (i.e., seman-

tics) through a word or phrase (i.e., syntax), while a concept

conveys the meaning of a term.

(2) To collect the approaches and tools used to identify and record

AA as well as the practical challenges associated with AA iden-

tification and recoding.

(3) To find out about the reasons for not identifying and recording

AA in industry practice.

The results of our survey suggest the need for establishing a

widely accepted understanding of the AA concept in software de-

velopment, and specific approaches, tools, and guidelines to sup-

port AA identification and recording.

The rest of this paper is structured as follows: Section 2 dis-

cusses related work. Section 3 describes the research approach in

detail. Section 4 presents the survey results. Sections 5 and 6 dis-

cuss the findings and threats to validity of the survey respectively.

Section 7 concludes this survey with future work directions.

2. Related work

Related work on assumptions in software engineering and AA is

discussed in this section, covering definitions and classifications of

assumptions, as well as methods of managing them (such as iden-

tifying and recording assumptions).

2.1. Assumptions in software engineering

Tang et al. (Tang et al., 2007) defined assumptions as “explicit

documentation of the unknowns or the expectations to provide a con-

text to decision making”, which is an important architecture ele-

ment in rationale-based architecture model.

Lewis et al. (Lewis et al., 2004) proposed a prototype Assump-

tions Management System in software development, which can ex-

tract assumptions from source code and record them into a repos-

itory for management. The authors also provided a taxonomy of

general assumptions in software development, including (1) con-

trol assumptions (expected control flow), (2) environment assump-

tions (expected environmental factors), (3) data assumptions (ex-

pected input or output data), (4) usage assumptions (expected use

of applications), and (5) convention assumptions (followed stan-

dards or conventions in development).

Tirumala et al., (2005) focused on component assumptions, and

emphasized that mismatched assumptions between software com-

ponents are one of the major reasons leading to failures in real-

time systems, and most component assumptions are implicit. Thus

the authors proposed a framework to make component assump-

tions explicit in real-time systems.

Zschaler and Rashid, (2011) focused on aspect assumptions in

aspect-oriented software development, and classified aspect as-

sumptions in two categories, with six types and thirteen subtypes.

This classification is beneficial for code improvement, and assump-

tions elicitation and verification in aspect-oriented code.

Haley et al., (2006) focused on trust assumptions, and pointed

out that trust assumptions (including explicit and implicit trust as-

sumptions) may impact the way to realize functions of a system

and the scope of requirements analysis. The authors also proposed

a model, which is composed of six elements, to present trust as-

sumptions.

Lehman and Ramil, (2001) proposed several guidelines for man-

aging assumptions. For example, the authors believed that it is

necessary to train all stakeholders to identify and record assump-

tions (including explicit and implicit assumptions) at all stages of

the development based on a standard form or structure.

These works investigate several types of assumptions (e.g., com-

ponent assumption, aspect assumption, and trust assumption),

which focus on different aspects of a system, while our survey

focuses on architectural assumption. The related work reveals a

number of interesting findings and directions on assumptions in

software engineering (e.g., definitions of assumptions, classifica-

tions of assumptions, and approaches of identifying and recording

assumptions), which have been used as input for this survey with

a special focus on AA (see Section 3.3.1). In addition, in this sur-

vey we deal with the use of the AA term, the importance of AA, as

well as the challenges (reasons) of (not) identifying and recording

AA.

2.2. Architectural assumptions

Garlan et al. (Garlan et al., 2009) identified four general cate-

gories of AA that are implicit and undocumented and consequently

lead to architectural mismatch: (1) nature of components, (2) na-

ture of connectors, (3) global architectural structure, and (4) soft-

ware construction process. This categorization is based on a struc-

tural view of architecture, which regards SA as a set of structures,

including components and connectors.

Lago and van Vliet, (2005) distinguish AA from requirements

and constraints as the reasons for ADDs that are arbitrarily taken

based on personal experience and knowledge. An assumption



Download English Version:

https://daneshyari.com/en/article/459255

Download Persian Version:

https://daneshyari.com/article/459255

Daneshyari.com

https://daneshyari.com/en/article/459255
https://daneshyari.com/article/459255
https://daneshyari.com

