
Specifying behavioral semantics of UML diagrams through graph transformations

Jun Kong a,*, Kang Zhang b, Jing Dong b, Dianxiang Xu a

a North Dakota State University, Fargo, ND 58105, United States
b The University of Texas at Dallas, Dallas, TX, United States

a r t i c l e i n f o

Article history:
Received 8 October 2007
Received in revised form 16 June 2008
Accepted 16 June 2008
Available online 27 June 2008

Keywords:
Graph transformation
Graph grammars
Visual programming
Visual languages
UML
Behavioral semantics
Object-oriented systems

a b s t r a c t

The Unified Modeling Language (UML) has been widely accepted as a standard for modeling software sys-
tems from various perspectives. The intuitive notations of UML diagrams greatly improve the communi-
cation among developers. However, the lack of a formal semantics makes it difficult to automate analysis
and verification. This paper offers a graphical yet formal approach to specifying the behavioral semantics
of statechart diagrams using graph transformation techniques. It supports many advanced features of
statecharts, such as composite states, firing priority, history, junction, and choice. In our approach, a
graph grammar is derived automatically from a state machine to summarize the hierarchy of states.
Based on the graph grammar, the execution of a set of non-conflict state transitions is interpreted by a
sequence of graph transformations. This facilitates verifying a design model against system requirements.
To demonstrate our approach, we present a case study on a toll-gate system.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Compared with texts, graphs are more intuitive in expressing
structural information. Therefore, graphical notations have been
extensively used in software development. As a visual modeling
language, the Unified Modeling Language (UML) (Rumbaugh et
al., 2005) includes various diagrams that specify software artifacts
from various points of view. For example, the class diagram models
the static structure of a system whereas the statechart diagram de-
scribes the behavior of the objects of a class. The intuitive nature of
UML notations greatly facilitates distribution and communication
of software artifacts among different developers. However, UML
lacks a precise semantics, making it difficult to automate verifica-
tion and analysis. Providing a precise semantics for UML diagrams
has gained much attention (Bruel et al., 1998; Evans et al., 1999;
Geiger and Zündorf, 2004; Kuske, 2001; Kuske et al., 2002).

Graph transformation offers a computational paradigm of
mathematical precision and visual specification (Varró et al.,
2002). It provides a means for specifying the semantics of UML dia-
grams. In general, graph transformation defines computation in a
multi-dimensional fashion based on a set of rewriting rules, i.e.,
productions. Each production consists of two parts: a left graph
and a right graph. The difference between the two visually indi-
cates the changes caused by a computation. Using graphs to repre-

sent the states of a software application, the behavioral semantics
can be captured naturally through a sequence of productions, i.e.,
transitions from one graph (representing the current state) to an-
other (representing the next state). Explaining one set of visual
notations (e.g., UML diagrams) by another with a precise meaning
(e.g., graph transformation productions) reduces the gap between
the specifying language and the specified language. This has been
demonstrated by the successful applications of graph transforma-
tions to the behavioral semantics of state diagrams (Engels et al.,
2000; Kuske, 2001).

Graph-transformation-based approaches (Baresi and Pezzè,
2001; Engels et al., 2000; Gogolla et al., 1998; Kuske, 2001; Varró
et al., 2002) are suitable for specifying the semantics of UML state-
chart diagrams since there is no need to convert from graphical
notations to textual/mathematical formalism (Crane et al., 2005).
Although some of those approaches support composite states and
firing priority, none of them covers the important features of his-
tory, junction and choice according to Crane et al. (2005). This pa-
per presents a visual yet formal approach that supports those
important features in the UML statechart diagrams. In particular,
our approach can automatically translate a UML statechart
diagram to a graph grammar with a precise semantics. The
automation relieves the burden of learning graph grammar.
Furthermore, our approach can lead to the development of a new
verification framework. Existing verification frameworks often rely
on transformation of system requirements in some formal lan-
guage, which may cause a mismatch between system requirement
and formal specification. In comparison, our approach can directly

0164-1212/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2008.06.030

* Corresponding author. Tel.: +1 701 231 8179; fax: +1 701 231 8255.
E-mail addresses: jun.kong@ndsu.edu (J. Kong), kzhang@utdallas.edu (K. Zhang),

jdong@utdallas.edu (J. Dong), dianxiang.xu@ndsu.edu (D. Xu).

The Journal of Systems and Software 82 (2009) 292–306

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss

mailto:jun.kong@ndsu.edu
mailto:kzhang@utdallas.edu
mailto:jdong@utdallas.edu
mailto:dianxiang.xu@ndsu.edu
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


verify the defined behavioral semantics against system require-
ments specified in the form of sequence diagrams.

In our approach, the hierarchy of states in a statechart diagram
is automatically formalized as a graph grammar, which extends a
graph transformation system by defining an initial graph and clas-
sifying terminal and non-terminal objects. Accordingly, the state
transition is implemented through a combination of a parsing pro-
cess and a generating process. More specifically, starting from an ini-
tial graph, the generating process can generate well-formed graphs
by iteratively applying productions in the forward direction (Blos-
tein et al., 1994). The parsing process, on the other hand, can rec-
ognize the membership of a graph based on a sequence of
production applications in the reverse direction (Blostein et al.,
1994). It is used to recognize the source state of a state transition
while the generating process is to generate the target state. In addi-
tion, a set of algebraic structures are abstracted to control the se-
quence of production applications due to the complex state
entries in UML statechart diagrams. As such, our graph-grammar-
based approach provides a foundation for directly executing UML
models.

Executable UML models (Mellow and Balcer, 2002; Raistrick et
al., 2004; Schattkowsky and Müller, 2004, 2005; Starr, 2001),
which emphasize the behavioral aspect of a software artifact,
can keep specification and implementation consistent. A UML
model can be executed by translating it to some platform-depen-
dent code through a code generator. An alternative approach is to
directly execute UML models with a precise semantics on a UML
virtual machine (UVM) (Schattkowsky and Müller, 2004, 2005). In
our approach, the integrated behavioral semantics of class dia-
gram, statechart diagram and object diagram is defined precisely
by two sets of productions. One set of productions are organized
in the form of graph grammar that interprets the state transition
of objects; and the other set of productions specify the dynamic
reconfiguration of object diagrams. The applications of two sets
of productions are synchronized according to event dispatching.
Our approach is well supported by the methodology of automatic
visual language generation (Costagliola et al., 2004; Karsai et al.,
2003; Zhang et al., 2001b). The generated language environment
is considered to be a UML virtual machine that supports syn-
tax-correct design of visual models and simulates the execution
of integrated UML diagrams. Compared with other graph-trans-
formation-based approaches (Ermel et al., 2005; Gogolla et al.,
2002; Hölscher et al., 2006; Kuske et al., 2002; Ziemann et al.,
2004a,b), which support the execution of integrated UML models,
our approach can handle composite states that are typically
needed in real-world modeling while it is challenging to effec-
tively recognize and generate composite states due to the state
explosion problem.

Various grammar formalisms (Costagliola et al., 1997; Costa-
gliola and Polese, 2000; Rekers and Schürr, 1997; Schürr et al.,
1995; Zhang et al., 2001a) have been proposed for different pur-
poses. Most of them use nodes to represent objects and edges to
model relations between objects in an abstract syntax. Different
from these formalisms, the spatial graph grammar (SGG) (Kong
et al., 2006) introduces spatial notions to the abstract syntax.
In the SGG, nodes and edges together with spatial relations con-
struct the pre-condition of a production application. The direct
representation of spatial information in the abstract syntax can
make productions easy to understand since grammar designers
often design rules with similar appearances as the represented
graphs. Using spatial information to directly model relationships
in the abstract syntax is coherent with the concrete representa-
tion, which avoids converting spatial information to edges.
Therefore, our approach uses the SGG as the underlying formal-
ism to specify the behavioral semantics of statechart and object
diagrams.

The contributions of this paper can be summarized as follows:

� Our approach integrates a sound formalism with visual nota-
tions to specify the behavioral semantics of statechart diagrams:
using one set of visual notations with a precise meaning (e.g.,
graph transformation) to explain another set of visual notations
(e.g., UML statechart diagrams) reduces the efforts of converting
graphical notations to textual/mathematical formalisms.

� Among the graph-transformation-based approaches, our
approach is the first to address all of the important features of
statechart diagrams, including composite state, initial pseudo-
state, final state, deepHistory, shallowHistory, join, fork, junction,
and choice. Pseudo-states are useful in practical behavior model-
ing, but they require a sophisticated mechanism to control the
state transition when entering a composite state. Our approach
defines an efficient control mechanism by mapping each specific
state entry onto a corresponding graph transformation rule.

� Our approach automatically converts the hierarchy of states to a
graph grammar, and correspondingly applies a parsing process
and a generating process to execute state transitions. This effi-
ciently addresses the state explosion problem because a small
number of productions can specify a large number of state combi-
nations. Furthermore, it can enforce a consistent state transition.

� This paper also presents a case study, which illustrates the def-
inition of an integrated behavioral semantics and the verifica-
tion of consistency between a design model and system
requirements. The integrated behavioral semantics is defined
in the form of a spatial graph grammar, which naturally repre-
sents relations through spatial configuration and thus reduces
the gap between the abstract and concrete representations of
models. Different from other verification methods, our approach
can directly apply a use case scenario (represented as a sequence
diagram) to the defined behavioral semantics without the need
of translating system requirements into some formal language.

In summary, this paper provides a visual yet formal approach to
interpreting state transitions in UML statechart diagrams. Accord-
ing to the behavioral semantics of UML statechart diagrams, we de-
fine an integrated behavioral semantics, which provides a solid
foundation for verifying a design model against system
requirements.

The rest of this paper is organized as follows: Following a run-
ning example in Section 2, Section 3 introduces the spatial graph
grammar – the theoretical foundation of our approach. Section 4
gives an overview of our approach. Section 5 illustrates the seman-
tic specification and verification based on a toll-gate system. Sec-
tion 6 discusses related work and Section 7 concludes the paper.

2. A motivating example

This section illustrates a toll-gate system (Kong et al., 2005),
which is used as a running example to illustrate semantic specifi-
cation and verification in the following sections. In a road traffic
pricing system, drivers of authorized vehicles are charged at toll
gates. The tolls are placed at special lanes called green lanes. A dri-
ver has to install a device (called an ezpay) inside his/her vehicle’s
windshield in order to pass a green lane. The registration of an
authorized vehicle having an ezpay includes owner’s personal data
(such as name, date of birth, driver license number, bank account
number and vehicle registration number). Each toll gate has a sen-
sor that reads ezpay. The information read is stored by the system
and used to debit the respective account. When an authorized
vehicle passes through a green lane, a green light is turned on. If
an un-authorized vehicle passes through it, a camera takes a photo
of the vehicle’s license plate.

J. Kong et al. / The Journal of Systems and Software 82 (2009) 292–306 293



Download English Version:

https://daneshyari.com/en/article/459271

Download Persian Version:

https://daneshyari.com/article/459271

Daneshyari.com

https://daneshyari.com/en/article/459271
https://daneshyari.com/article/459271
https://daneshyari.com

