

Available online at www.sciencedirect.com

JOURNAL OF Functional Analysis

Journal of Functional Analysis 254 (2008) 1003-1057

www.elsevier.com/locate/jfa

Noncommutative Berezin transforms and multivariable operator model theory ☆

Gelu Popescu

Department of Mathematics, The University of Texas at San Antonio, San Antonio, TX 78249, USA Received 4 June 2007; accepted 11 June 2007 Available online 23 July 2007 Communicated by Paul Malliavin

Abstract

In this paper, we initiate the study of a class $\mathbf{D}_p^m(\mathcal{H})$ of noncommutative domains of *n*-tuples of bounded linear operators on a Hilbert space \mathcal{H} , where $m \ge 2$, $n \ge 2$, and *p* is a positive regular polynomial in *n* noncommutative indeterminates. These domains are defined by certain positivity conditions on *p*, i.e.,

$$\mathbf{D}_{n}^{m}(\mathcal{H}) := \{ X := (X_{1}, \dots, X_{n}) : (1-p)^{k}(X, X^{*}) \ge 0 \text{ for } 1 \le k \le m \}.$$

Each such a domain has a universal model (W_1, \ldots, W_n) of weighted shifts acting on the full Fock space $F^2(H_n)$ with *n* generators. The study of $\mathbf{D}_p^m(\mathcal{H})$ is close related to the study of the weighted shifts W_1, \ldots, W_n , their joint invariant subspaces, and the representations of the algebras they generate: the domain algebra $\mathcal{A}_n(\mathbf{D}_p^m)$, the Hardy algebra $F_n^\infty(\mathbf{D}_p^m)$, and the C^* -algebra $C^*(W_1, \ldots, W_n)$. A good part of this paper deals with these issues.

The main tool, which we introduce here, is a noncommutative Berezin type transform associated with each *n*-tuple of operators in $\mathbf{D}_p^m(\mathcal{H})$. The study of this transform and its boundary behavior leads to Fatou type results, functional calculi, and a model theory for *n*-tuples of operators in $\mathbf{D}_p^m(\mathcal{H})$. These results extend to noncommutative varieties $\mathcal{V}_{p,\mathcal{Q}}^m(\mathcal{H}) \subset \mathbf{D}_p^m(\mathcal{H})$ generated by classes \mathcal{Q} of noncommutative polynomials. When $m \ge 2$, $n \ge 2$, $p = Z_1 + \cdots + Z_n$, and $\mathcal{Q} = 0$, the elements of the corresponding variety $\mathcal{V}_{p,\mathcal{Q}}^m(\mathcal{H})$ can be seen as multivariable noncommutative analogues of Agler's *m*-hypercontractions.

Our results apply, in particular, when Q consists of the noncommutative polynomials $Z_i Z_j - Z_j Z_i$, i, j = 1, ..., n. In this case, the model space is a symmetric weighted Fock space $F_s^2(\mathbf{D}_p^n)$, which is identified with a reproducing kernel Hilbert space of holomorphic functions on a Reinhardt domain in \mathbb{C}^n , and the universal model is the *n*-tuple $(M_{\lambda_1}, ..., M_{\lambda_n})$ of multipliers by the coordinate functions. In this particular

0022-1236/\$ – see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2007.06.004

^{*} Research supported in part by an NSF grant.

E-mail address: gelu.popescu@utsa.edu.

case, we obtain a model theory for commuting *n*-tuples of operators in $\mathbf{D}_p^m(\mathcal{H})$, recovering several results already existent in the literature.

© 2007 Elsevier Inc. All rights reserved.

0. Introduction

Let \mathbb{F}_n^+ be the unital free semigroup on n generators g_1, \ldots, g_n and the identity g_0 , and consider a polynomial $q = q(Z_1, \ldots, Z_n) = \sum c_{\alpha} Z_{\alpha}$ in noncommutative indeterminates Z_1, \ldots, Z_n , where we denote $Z_{\alpha} := Z_{i_1} \ldots Z_{i_k}$ if $\alpha = g_{i_1} \ldots g_{i_k} \in \mathbb{F}_n^+$, $i_1, \ldots, i_k \in \{1, \ldots, n\}$, and $Z_{g_0} := I$. We associate with q the operator

$$q(X, X^*) := \sum c_{\alpha} X_{\alpha} X_{\alpha}^*,$$

where $X := (X_1, ..., X_n) \in B(\mathcal{H})^n$ and $B(\mathcal{H})$ is the algebra of all bounded linear operators on a Hilbert space \mathcal{H} . Let $p = p(Z_1, ..., Z_n) = \sum a_{\alpha} Z_{\alpha}$, $a_{\alpha} \in \mathbb{C}$, be a positive regular polynomial, i.e., $a_{\alpha} \ge 0$, $a_{g_0} = 0$, and $a_{g_i} > 0$, i = 1, ..., n. Given $m, n \in \{1, 2, ...\}$, we define the noncommutative domain

$$\mathbf{D}_{p}^{m}(\mathcal{H}) := \{ X := (X_{1}, \dots, X_{n}) \in B(\mathcal{H})^{n} : (1-p)^{k}(X, X^{*}) \ge 0 \text{ for } 1 \le k \le m \}.$$

In the last fifty years, these domains have been studied in several particular cases. Most of all, we should mention that the study of the closed operator unit ball

$$\begin{bmatrix} B(\mathcal{H}) \end{bmatrix}_{1}^{-} := \{ X \in B(\mathcal{H}) : I - XX^* \ge 0 \}$$

(which corresponds to the case m = 1, n = 1, and p = Z) has generated the celebrated Sz.-Nagy– Foias theory of contractions on Hilbert spaces and has had profound implications in function theory, interpolation, prediction theory, scattering theory, and linear system theory (see [11,21, 22,51], etc.). The case when m = 1, $n \ge 2$, and $p = Z_1 + \cdots + Z_n$, corresponds to the closed operator ball

$$\left[B(\mathcal{H})^n\right]_1^- := \left\{ (X_1, \dots, X_n) \in B(\mathcal{H})^n \colon I - X_1 X_1^* - \dots - X_n X_n^* \ge 0 \right\}$$

and its study has generated a *free* analogue of Sz.-Nagy–Foias theory (see [10,13,19,23,30–43,46, 47], etc.). The commutative case, which corresponds to the subvariety of $[B(\mathcal{H})^n]_1$ determined by the commutators $Z_i Z_j - Z_j Z_i$, i, j = 1, ..., n, was considered by Drurry [20], extensively studied by Arveson [7,8], and considered by the author [39] in connection with noncommutative Poisson transforms. More general subvarieties in $[B(\mathcal{H})^n]_1$, determined by classes of noncommutative polynomials, were considered by the author in [43,46]. The study of the unit ball $[B(\mathcal{H})^n]_1$ was extended, in [45], to noncommutative domains $\mathbf{D}_p^m(\mathcal{H})$ (respectively subvarieties) when $m = 1, n \ge 1$, and p is any positive regular noncommutative polynomial (respectively free holomorphic function in the sense of [44]).

Keywords: Multivariable operator theory; Noncommutative domain; Noncommutative variety; Dilation theory; Model theory; Weighted shift; Wold decomposition; Fock space; von Neumann inequality; Berezin transform; Creation operators

Download English Version:

https://daneshyari.com/en/article/4592729

Download Persian Version:

https://daneshyari.com/article/4592729

Daneshyari.com