

Available online at www.sciencedirect.com

JOURNAL OF Functional Analysis

Journal of Functional Analysis 254 (2008) 2995-3036

www.elsevier.com/locate/jfa

Radial solutions for the Brezis–Nirenberg problem involving large nonlinearities ☆

Massimo Grossi

Dipartimento di Matematica, Università di Roma "La Sapienza," P.le A. Moro 2, 00185 Roma, Italy Received 10 September 2007; accepted 4 March 2008 Available online 14 April 2008 Communicated by H. Brezis

Abstract

Let us consider the problem

$$\begin{cases} -\Delta u + a(|x|)u = u^p & \text{in } B_1, \\ u > 0 & \text{in } B_1, \\ u = 0 & \text{on } \partial B_1, \end{cases}$$
(0.1)

where B_1 is the unit ball in \mathbb{R}^N , $N \ge 3$, and $a(|x|) \ge 0$ is a smooth radial function.

Under some suitable assumptions on the regular part of the Green function of the operator $-u'' - \frac{N-1}{r}u + a(r)u$, we prove the existence of a radial solution to (0.1) for *p* large enough. © 2008 Elsevier Inc. All rights reserved.

Keywords: Supercritical problems; Green's function; Radial solutions

1. Introduction

Let us consider the problem

$$\begin{cases} -\Delta u + a(x)u = u^p & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.1)

^{*} The author is supported by M.I.U.R., project "Variational Methods and Nonlinear Differential Equations." *E-mail address:* grossi@mat.uniroma1.it.

where Ω is a bounded smooth domain of \mathbb{R}^N , $N \ge 3$, p > 1, a(x) is a smooth function and the operator $-\Delta + a(x)I$ is coercive.

Let us recall some existence results to (1.1). First we consider the subcritical case, i.e. 1 . In this setting there always exists a solution to (1.1) which can be found as

$$\inf_{\substack{u\in H_0^1(\Omega)\\\|u\|_{p+1}=1}}\int_{\Omega} (|\nabla u|^2 + a(x)u^2).$$

We point out that the compactness of embedding $H_0^1(\Omega) \hookrightarrow L^{p+1}(\Omega)$ for 1 plays a crucial role.

If $p = \frac{N+2}{N-2}$ (the critical case) the problem becomes much more difficult. Indeed, using the Pohozaev identity [22] it is possible to show that if Ω is star-shaped with respect to some point and $a(x) \equiv 0$ then there is no solution to (1.1). So it is not possible to obtain the same result as in the subcritical case.

A relevant progress in investigating the critical case was done in the pioneering paper of Brezis and Nirenberg [3]. Among the other results they proved that for $N \ge 4$ and $a(x) \le \delta < 0$ on some open subset of Ω there exists at least one solution to (1.1).

A different sufficient condition to ensure solutions to (1.1) for positive a(x) can be found in [20] (see also [11] for the case N = 3).

Another fundamental result in the critical case $p = \frac{N+2}{N-2}$ and $a(x) \equiv 0$ is due to Coron [4], Bahri and Coron [1] where is showed the role of topology of the domain in the existence of solutions to (1.1). In particular, if Ω has one hole, there exists a solution to (1.1).

The supercritical case $p > \frac{N+2}{N-2}$ appears more complicated and there is no existence result for general domain (or suitable function a(x)) for any p > 1. However, let us recall that

- (i) if Ω is star-shaped with respect to some point and a(x) = λ ≥ 0 then there is no solution to (1.1);
- (ii) if Ω is an annulus and $a(x) \equiv 0$ Kazdan and Warner [16] proved the existence of a radial solution for any p > 1.

On the other hand, in the last years there was some progress considering $p = \frac{N+2}{N-2} + \varepsilon$ where ε is a (small) positive parameter. We just mention the papers [2,6–8,14,17,21] and the references therein.

For other results which are not a perturbation of the critical case, we mention some interesting existence and nonexistence results due to Passaseo [18,19]. In these papers was constructed a contractible domain for which there is a solution to (1.1) for any p > 1 and it was exhibited a nontrivially topological domain for which there is no solution to (1.1). This shows that the Bahri–Coron result cannot be true in the supercritical case.

We also quote a recent result due to del Pino and Wei [5] where the authors prove that if Ω is a domain with a small hole and $a(x) \equiv 0$ then for any $p > \frac{N+2}{N-2}$, $p \neq p_n$, where p_n is a suitable sequence such that $p_n \to \infty$ as $n \to \infty$, there exists at least one solution.

Download English Version:

https://daneshyari.com/en/article/4592781

Download Persian Version:

https://daneshyari.com/article/4592781

Daneshyari.com