

Available online at www.sciencedirect.com

Journal of Functional Analysis 232 (2006) 90-136

JOURNAL OF Functional Analysis

www.elsevier.com/locate/jfa

Uniqueness properties of solutions of Schrödinger equations

Alexandru D. Ionescu^{a, 1}, Carlos E. Kenig^{b,*,2}

^aUniversity of Wisconsin–Madison, USA ^bUniversity of Chicago, Chicago, USA

Received 31 May 2005; accepted 1 June 2005 Communicated by J. Bourgain Available online 18 August 2005

Abstract

Under suitable assumptions on the potentials V and a, we prove that if $u \in C([0, 1], H^1)$ is a solution of the linear Schrödinger equation

$$(i\partial_t + \Delta_x)u = Vu + a \cdot \nabla_x u$$
 on $\mathbb{R}^d \times (0, 1)$

and if $u \equiv 0$ in $\{|x| > R\} \times \{0, 1\}$ for some $R \ge 0$, then $u \equiv 0$ in $\mathbb{R}^d \times [0, 1]$. As a consequence, we obtain uniqueness properties of solutions of nonlinear Schrödinger equations of the form

$$(i\partial_t + \Delta_x)u = G(x, t, u, \overline{u}, \nabla_x u, \nabla_x \overline{u})$$
 on $\mathbb{R}^d \times (0, 1)$,

where G is a suitable nonlinear term. The main ingredient in our proof is a Carleman inequality of the form

$$\|e^{\beta\varphi_{\lambda}(x_{1})}v\|_{L^{2}_{x}L^{2}_{t}} + \|e^{\beta\varphi_{\lambda}(x_{1})}|\nabla_{x}v\|_{B^{\infty,2}_{x}L^{2}_{t}} \leqslant \overline{C}\|e^{\beta\varphi_{\lambda}(x_{1})}(i\partial_{t} + \Delta_{x})v\|_{B^{1,2}_{x}L^{2}_{t}}$$

0022-1236/\$-see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2005.06.005

^{*}Corresponding author.

E-mail addresses: ionescu@math.wisc.edu (A.D. Ionescu), cek@math.uchicago.edu (C.E. Kenig).

¹ Supported in part by an NSF grant and an Alfred P. Sloan research fellowship.

² Supported in part by an NSF grant.

for any $v \in C(\mathbb{R} : H^1)$ with $v(., t) \equiv 0$ for $t \notin [0, 1]$. In this inequality, $B_x^{\infty, 2}$ and $B_x^{1, 2}$ are Banach spaces of functions on \mathbb{R}^d , and $e^{\beta \varphi_{\lambda}(x_1)}$ is a suitable weight. © 2005 Elsevier Inc. All rights reserved.

MSC: 35B37

Keywords: Carleman inequalities; Local smoothing; Uniqueness of solutions; Parametrices

1. Introduction

In this paper we study uniqueness properties of solutions of certain nonlinear Schrödinger equations of the form

$$(i\partial_t + \Delta_x)u = G(x, t, u, \overline{u}, \nabla_x u, \nabla_x \overline{u}) \text{ on } \mathbb{R}^d \times (0, 1),$$
(1.1)

where G is a nonlinear term. We are concerned with the following type of uniqueness question:

Question Q. Assume that u_1 and u_2 are solutions of (1.1) in a suitable function space, and $u_1(x, t) = u_2(x, t)$ for $t \in \{0, 1\}$ and $|x| \ge R$, for some $R \ge 0$. Can we then conclude that $u_1 \equiv u_2$ in $\mathbb{R}^d \times [0, 1]$?

This type of uniqueness question seems to originate in control theory and was answered in the affirmative under various assumptions on the nonlinear term $G(x, t, u, \overline{u}, \nabla_x u, \nabla_x \overline{u}) = G(x, t, u, \overline{u})$ (no dependence on the gradient terms $\nabla_x u$ and $\nabla_x \overline{u}$). Zhang [16] used the inverse scattering theory to answer the question Q in the affirmative in the special case d = 1, $G = \alpha |u|^2 u$, $\alpha \in \mathbb{R}$, $u_2 \equiv 0$. Bourgain [1] proved uniqueness under analyticity assumptions on the nonlinear term $G = G(u, \overline{u})$, with $u_2 \equiv 0$, and the stronger assumption that u_1 is compactly supported for all $t \in [0, 1]$. Kenig et al. [9] answered question Q in the affirmative for sufficiently smooth (in particular, bounded) solutions u_1 and u_2 , when $G = G(u, \overline{u})$ satisfies estimates of the form

$$|\nabla G(u, \overline{u})| \leq C(|u|^{p_1-1} + |u|^{p_2-1}), \ 1 < p_1, p_2.$$

The boundedness requirement on the solutions u_1 and u_2 was relaxed to optimal L^p conditions by Ionescu and Kenig [4].

A similar uniqueness question was also considered in the setting of the generalized KdV equation

$$(i^{s-1}\partial_t + \partial_x^s)u = G(x, t, u, \partial_x u, \dots, \partial_x^{s-1}u)$$
 on $\mathbb{R} \times (0, 1), s \ge 2$

by Zhang [15], Bourgain [1] and Kenig et al. [8,10,11], under various assumptions on the nonlinear term G and the solutions u_1 and u_2 . A brief description of these results can be found in the introduction of [4].

Download English Version:

https://daneshyari.com/en/article/4593047

Download Persian Version:

https://daneshyari.com/article/4593047

Daneshyari.com