On the distribution of numbers related to the divisors of $x^{n}-1$

Sai Teja Somu
Department of Mathematics, Indian Institute of Technology Roorkee, 247667, India

A R T I C L E I N F O

Article history:

Received 9 November 2015
Received in revised form 15 June 2016
Accepted 15 June 2016
Available online 2 August 2016
Communicated by David Goss

Keywords:

Distribution of coefficients of
divisors of $x^{n}-1$
Coefficients of divisors
Coefficients of divisors of $x^{n}-1$
Coefficients of cyclotomic
polynomials
Cyclotomic polynomials
On the distribution of numbers
related
Natural density of coefficients

A B S T R A C T

Let n_{1}, \cdots, n_{r} be any finite sequence of integers and let S be the set of all natural numbers n for which there exists a divisor $d(x)=1+\sum_{i=1}^{d e g(d)} c_{i} x^{i}$ of $x^{n}-1$ such that $c_{i}=n_{i}$ for $1 \leq i \leq r$. In this paper we show that the set S has a natural density. Furthermore, we find the value of the natural density of S.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Cyclotomic polynomials arise naturally as irreducible divisors of $x^{n}-1$. The polynomial $x^{n}-1$ can be factored in the following way

$$
\begin{equation*}
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) \tag{1}
\end{equation*}
$$

[^0]Applying Mobius inversion we get

$$
\begin{equation*}
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)} \tag{2}
\end{equation*}
$$

The problem of determining the size of maximum coefficient of cyclotomic polynomials has been the subject of the papers [5] and [1]. In [3] Pomerance and Ryan study the size of maximum coefficient of divisors of $x^{n}-1$.

It has been proven in [4] that for every finite sequence of integers $\left(n_{i}\right)_{i=1}^{r}$, there exists $d(x)=1+\sum_{i=1}^{\operatorname{deg}(d)} c_{i} x^{i}$, a divisor of $x^{n}-1$ for some $n \in \mathbb{N}$, such that $c_{i}=n_{i}$ for $1 \leq i \leq r$. In this paper we investigate the following problem. For a given sequence $\left(n_{i}\right)_{i=1}^{r}$, let $S\left(n_{1}, \cdots, n_{r}\right)$ denote the set of all n such that $x^{n}-1$ has a divisor $d(x)$ of the form $d(x)=1+\sum_{i=1}^{r} n_{i} x^{i}+\sum_{i=r+1}^{\operatorname{deg}(d)} c_{i} x^{i}$. We prove that $S\left(n_{1}, \cdots, n_{r}\right)$ has a natural density. Observe that if $n \in S\left(n_{1}, \cdots, n_{r}\right)$ then every multiple of n is in $S\left(n_{1}, \cdots, n_{r}\right)$.

2. Notation

If $f(x)$ and $g(x)$ are two analytic functions in some neighborhood of 0 , we denote $f(x) \equiv g(x) \bmod x^{r+1}$ if the coefficients of x^{i} in the power series of $f(x)$ and $g(x)$ are equal for $0 \leq i \leq r$.

We denote by $\omega(n)$ the number of distinct prime factors of n. Let $\delta(d)$ be 1 if $d \neq 1$ and $\delta(d)$ be -1 otherwise. Note that

$$
\begin{equation*}
\Phi_{n}(x)=\delta(n) \prod_{d \mid n}\left(1-x^{d}\right)^{\mu\left(\frac{n}{d}\right)} \tag{3}
\end{equation*}
$$

3. Proof of Main Theorem

We require several lemmas in order to prove that $S\left(n_{1}, \cdots, n_{r}\right)$ has a natural density.
Lemma 3.1. For every finite sequence of integers n_{1}, \cdots, n_{r} there exists a unique sequence of integers k_{1}, \cdots, k_{r} such that

$$
\begin{equation*}
\prod_{i=1}^{r}\left(1-x^{i}\right)^{k_{i}} \equiv 1+\sum_{i=1}^{r} n_{i} x^{i} \quad \bmod x^{r+1} \tag{4}
\end{equation*}
$$

Proof. The proof is by induction on r. If $r=1$, using $(1-x)^{k_{1}} \equiv 1-k_{1} x\left(\bmod x^{2}\right)$, we see that $k_{1}=-n_{1}$ is the unique choice for k_{1}. Say the lemma holds for $r-1$, and let A be such that

$$
\prod_{i=1}^{r-1}\left(1-x^{i}\right)^{k_{i}} \equiv 1+\sum_{i=1}^{r-1} n_{i} x^{i}+A x^{r}\left(\bmod x^{r+1}\right)
$$

https://daneshyari.com/en/article/4593111

Download Persian Version:

https://daneshyari.com/article/4593111

Daneshyari.com

[^0]: E-mail address: somuteja@gmail.com.

