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Let n1, · · · , nr be any finite sequence of integers and let S
be the set of all natural numbers n for which there exists a 
divisor d(x) = 1 +

∑deg(d)
i=1 cixi of xn − 1 such that ci = ni for 

1 ≤ i ≤ r. In this paper we show that the set S has a natural 
density. Furthermore, we find the value of the natural density 
of S.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Cyclotomic polynomials arise naturally as irreducible divisors of xn − 1. The polyno-
mial xn − 1 can be factored in the following way

xn − 1 =
∏
d|n

Φd(x). (1)
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Applying Mobius inversion we get

Φn(x) =
∏
d|n

(xd − 1)μ(n
d ). (2)

The problem of determining the size of maximum coefficient of cyclotomic polynomials 
has been the subject of the papers [5] and [1]. In [3] Pomerance and Ryan study the size 
of maximum coefficient of divisors of xn − 1.

It has been proven in [4] that for every finite sequence of integers (ni)ri=1, there exists 

d(x) = 1 +
deg(d)∑
i=1

cix
i, a divisor of xn − 1 for some n ∈ N, such that ci = ni for 1 ≤ i ≤ r. 

In this paper we investigate the following problem. For a given sequence (ni)ri=1, let 
S(n1, · · · , nr) denote the set of all n such that xn − 1 has a divisor d(x) of the form 

d(x) = 1 +
r∑

i=1
nix

i +
deg(d)∑
i=r+1

cix
i. We prove that S(n1, · · · , nr) has a natural density. 

Observe that if n ∈ S(n1, · · · , nr) then every multiple of n is in S(n1, · · · , nr).

2. Notation

If f(x) and g(x) are two analytic functions in some neighborhood of 0, we denote 
f(x) ≡ g(x) mod xr+1 if the coefficients of xi in the power series of f(x) and g(x) are 
equal for 0 ≤ i ≤ r.

We denote by ω(n) the number of distinct prime factors of n. Let δ(d) be 1 if d �= 1
and δ(d) be −1 otherwise. Note that

Φn(x) = δ(n)
∏
d|n

(
1 − xd

)μ(n
d

)
. (3)

3. Proof of Main Theorem

We require several lemmas in order to prove that S(n1, · · · , nr) has a natural density.

Lemma 3.1. For every finite sequence of integers n1, · · · , nr there exists a unique sequence 
of integers k1, · · · , kr such that

r∏
i=1

(1 − xi)ki ≡ 1 +
r∑

i=1
nix

i mod xr+1. (4)

Proof. The proof is by induction on r. If r = 1, using (1 −x)k1 ≡ 1 − k1x( mod x2), we 
see that k1 = −n1 is the unique choice for k1. Say the lemma holds for r − 1, and let A
be such that

r−1∏
i=1

(1 − xi)ki ≡ 1 +
r−1∑
i=1

nix
i + Axr( mod xr+1).
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