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1. Introduction

Cyclotomic polynomials arise naturally as irreducible divisors of 2™ — 1. The polyno-
mial z" — 1 can be factored in the following way

2" —1 =[] @al2). (1)
d|n
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Applying Mobius inversion we get

B, (x) = [ — 1)), (2)

d|n

The problem of determining the size of maximum coefficient of cyclotomic polynomials
has been the subject of the papers [5] and [1]. In [3] Pomerance and Ryan study the size
of maximum coefficient of divisors of 2™ — 1.

It has been proven in [4] that for every finite sequence of integers (n;)7_;, there exists

d(z) =1+ dei(:d) c;zt, a divisor of ™ — 1 for some n € N, such that ¢; = n; for 1 <4 < r.
In this papér: 1We investigate the following problem. For a given sequence (n;);_;, let
S(n1,- - ,n,) denote the set of all n such that 2™ — 1 has a divisor d(x) of the form
dlz) = 1+ i n;xt + ﬁlegz(d) c;x'. We prove that S(ni,---,n,) has a natural density.
Observe thatZ:ifln € S(nllz,ﬂr1 ,n,) then every multiple of n is in S(nq,-- -, n,).

2. Notation

If f(x) and g(z) are two analytic functions in some neighborhood of 0, we denote
f(x) = g(x) mod 2"t if the coefficients of 2% in the power series of f(x) and g(z) are
equal for 0 <1 <r.

We denote by w(n) the number of distinct prime factors of n. Let §(d) be 1 if d # 1
and 0(d) be —1 otherwise. Note that

(@) = o(m) [T (1 - =), 3)

dln
3. Proof of Main Theorem

We require several lemmas in order to prove that S(ni,--- ,n,) has a natural density.
Lemma 3.1. For every finite sequence of integers ny, - -+ ,n, there exists a unique sequence

of integers ky,--- , k. such that

T

s
H(l —ahki =14 anmz mod z" . (4)
i=1

i=1

Proof. The proof is by induction on 7. If 7 = 1, using (1 —2)¥* = 1 — kj2( mod z2), we
see that k1 = —n; is the unique choice for k;. Say the lemma holds for » — 1, and let A
be such that

r—1 r—1
H(l L an:ﬂ + Az"( mod z" ).

=1 i=1
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