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Let g�(p) denote the least square-free primitive root mod-
ulo p. We show that g�(p) < p0.96 for all p.
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1. Introduction

Let ĝ(p) denote the least prime primitive root modulo p. By Dirichlet’s theorem on 
primes in arithmetic progressions, it is clear that ĝ(p) exists. Nevertheless, it is not known 
whether ĝ(p) < p for all p, or even for all sufficiently large p. The best unconditional result 
(by Ha [3]) says that ĝ(p) � p3.1. On assuming the Generalised Riemann Hypothesis it 
is known [7] that ĝ(p) � (log p)6+ε, and, recently, it was shown in [5] that ĝ(p) < √

p−2
for all p > 2791.
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In this article we consider the broader (and easier) case of square-free primitive roots. 
An integer n is said to be square-free if for all primes l|n we have l2 � n. Let g�(p) denote 
the least square-free primitive root modulo p, and let N�(p, x) denote the number of 
square-free primitive roots modulo p that do not exceed x. Shapiro [6, p. 355] showed 
that

N�(p, x) = φ(p− 1)
p− 1

{
6
π2x + O(2ω(p−1)p1/4(log p)1/2x1/2)

}
, (1)

where ω(n) is the number of distinct prime factors of n. This shows that N�(p, p1/2+ε) > 0
for any positive ε and for all sufficiently large p. Equivalently, this means that g�(p) �
p1/2+ε.

The error term in (1) has been improved by Liu and Zhang [4, Thm 1.1], who showed

N�(p, x) = φ(p− 1)
p− 1

{
6
π2x + O

(
p9/44+εx1/2+ε

)}
, (2)

whence one has that g�(p) � p9/22+ε. Instead of focusing on (2), we seek a version of 
(1) in order to bound g�(p) explicitly. We do this in the following theorem.

Theorem 1. We have g�(p) < p0.96 for all primes p. In particular all primes p possess a 
square-free primitive root less than p.

We note that using (1) does not allow one to show that g�(p) � p1/2. However, based 
on computational evidence, the bound in (2) and recent work in [2,5] it seems reasonable 
to extrapolate, as below.

Conjecture 1. For all p > 409 we have g�(p) < √
p− 2.

The outline of this paper is as follows. In §2 we collect the necessary results to make 
(1) explicit. In §3 we introduce a sieving inequality. We also carry out some rudimentary 
computations, which prove Theorem 1. Finally, in §4 we discuss a related problem on 
square-full primitive roots. Throughout this article we write n = � − free to indicate 
that n is a square-free integer.

2. Preliminary results

The following establishes an indicator function on primitive roots.

f(n) := φ(p− 1)
p− 1

∑
d|p−1

μ(d)
φ(d)

∑
χ∈Γd

χ(n) =
{

1 if n is a primitive root mod p

0 otherwise,
(3)

where 
∑

χ∈Γd
denotes a sum over all Dirichlet characters modulo p of order d. We 

therefore have
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