Imaginary quadratic fields whose ideal class groups have 3 -rank at least three

Yasuhiro Kishi ${ }^{\text {a,* }}$, Toru Komatsu ${ }^{\text {b }}$
a Department of Mathematics, Aichi University of Education, Aichi, 448-8542,
Japan
b Department of Mathematics, Tokyo University of Science, Chiba, 278-8510, Japan

A R T I C L E I N F O

Article history:
Received 24 March 2016
Accepted 18 June 2016
Available online 2 August 2016
Communicated by David Goss

MSC:

11R11
11R29
Keywords:
Quadratic fields
Ideal class groups

A B S TRACT

In this paper, we prove that the 3-rank of the ideal class group of the imaginary quadratic field $\mathbb{Q}\left(\sqrt{4-3^{18 n+3}}\right)$ is at least 3 for every positive integer n.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In 1973, Craig [1] proved that there exist infinitely many imaginary quadratic fields whose ideal class groups have 3-rank at least 3. After that Craig himself extended such lower bound replaced by 4 ([2]). However, less is known about a parametric family of such fields with high rank. On the other hand, one of the author showed in [6] that the 3 -rank of the ideal class group of imaginary quadratic field $\mathbb{Q}\left(\sqrt{4-3^{6 n+3}}\right)$ is at least 2

[^0]for any positive integer n. The goal of the present paper is to prove that the lower bound of 3 -rank for such fields can be replaced by 3 when n is divisible by 3 , that is,

Theorem 1. Let n be a positive integer. Then the 3-rank of the ideal class group of $\mathbb{Q}\left(\sqrt{4-3^{18 n+3}}\right)$ is at least 3 .

2. Proof of Theorem 1

For a positive integer n we consider two quadratic fields

$$
k:=\mathbb{Q}\left(\sqrt{4-3^{18 n+3}}\right) \text { and } k^{\prime}:=\mathbb{Q}\left(\sqrt{-3\left(4-3^{18 n+3}\right)}\right) .
$$

Denote the 3-rank of the ideal class group of k (resp. k^{\prime}) by r (resp. s). Then it holds that $r=s+1$ (cf. [6, Theorem 3]). Therefore it is sufficient to show that $s \geq 2$.

For an element α of a quadratic field k such that $N_{k}(\alpha)=m^{3}$ for some $m \in \mathbb{Z}$, define the cubic polynomial f_{α} by

$$
f_{\alpha}(X)=X^{3}-3 m X-\operatorname{Tr}_{k}(\alpha)
$$

where N_{k} and Tr_{k} denote the norm map and the trace map of k / \mathbb{Q}, respectively.
The following proposition, which combined [4, Lemma 1], [5, Proposition 6.5], [9, Theorem 1] (see Proposition 2.2) and [8, Lemma 3.2], is one of the main ingredients in the proof of our theorem.

Proposition 2.1. Let d be an integer with $d \notin \mathbb{Z}^{2} \cup\left(-3 \mathbb{Z}^{2}\right)$ and put $k=\mathbb{Q}(\sqrt{d})$ and $k^{\prime}=\mathbb{Q}(\sqrt{-3 d})$. Let α and β be integers in k^{\times}whose norms are cubic in \mathbb{Z}. Then we have
(1) The polynomial f_{α} is reducible over \mathbb{Q} if and only if α is cubic in k.
(2) If f_{α} is irreducible over \mathbb{Q}, then the splitting field E_{α} of f_{α} over \mathbb{Q} is a cyclic cubic extension of k^{\prime} unramified outside S and E_{α} has a cubic subfield K with $v_{3}\left(D_{K}\right) \neq 5$, where S is the set of all the prime divisors of $3 \operatorname{gcd}\left(N_{k}(\alpha), \operatorname{Tr}_{k}(\alpha)\right)$ and D_{K} is the discriminant of K.
(3) The splitting fields of f_{α} and f_{β} over \mathbb{Q} are distinct if and only if neither $\alpha \beta$ nor $\bar{\alpha} \beta$ is cubic in k, where $\bar{\alpha}$ is the conjugate of α in k.

Next we extract some results from Llorente and Nart [9, Theorem 1].
Proposition 2.2. Suppose that the cubic polynomial

$$
F(X)=X^{3}-a X-b, \quad a, b \in \mathbb{Z}
$$

is irreducible over \mathbb{Q}, and that either $v_{p}(a)<2$ or $v_{p}(b)<3$ holds for every prime p. Let θ be a root of $F(X)$, and put $K=\mathbb{Q}(\theta)$. Then we have

https://daneshyari.com/en/article/4593115

Download Persian Version:

https://daneshyari.com/article/4593115

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ykishi@auecc.aichi-edu.ac.jp (Y. Kishi), komatsu_toru@ma.noda.tus.ac.jp (T. Komatsu).

