

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Imaginary quadratic fields whose ideal class groups have 3-rank at least three

Yasuhiro Kishi^{a,*}, Toru Komatsu^b

INFO

 ^a Department of Mathematics, Aichi University of Education, Aichi, 448-8542, Japan
^b Department of Mathematics, Tokyo University of Science, Chiba, 278-8510, Japan

ARTICLE

Article history: Received 24 March 2016 Accepted 18 June 2016 Available online 2 August 2016 Communicated by David Goss

MSC: 11R11 11R29

Keywords: Quadratic fields Ideal class groups

АВЅТ КАСТ

In this paper, we prove that the 3-rank of the ideal class group of the imaginary quadratic field $\mathbb{Q}(\sqrt{4-3^{18n+3}})$ is at least 3 for every positive integer n.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In 1973, Craig [1] proved that there exist infinitely many imaginary quadratic fields whose ideal class groups have 3-rank at least 3. After that Craig himself extended such lower bound replaced by 4 ([2]). However, less is known about a parametric family of such fields with high rank. On the other hand, one of the author showed in [6] that the 3-rank of the ideal class group of imaginary quadratic field $\mathbb{Q}(\sqrt{4-3^{6n+3}})$ is at least 2

* Corresponding author.

E-mail addresses: ykishi@auecc.aichi-edu.ac.jp (Y. Kishi), komatsu_toru@ma.noda.tus.ac.jp (T. Komatsu).

for any positive integer n. The goal of the present paper is to prove that the lower bound of 3-rank for such fields can be replaced by 3 when n is divisible by 3, that is,

Theorem 1. Let n be a positive integer. Then the 3-rank of the ideal class group of $\mathbb{Q}(\sqrt{4-3^{18n+3}})$ is at least 3.

2. Proof of Theorem 1

For a positive integer n we consider two quadratic fields

$$k := \mathbb{Q}(\sqrt{4-3^{18n+3}})$$
 and $k' := \mathbb{Q}(\sqrt{-3(4-3^{18n+3})}).$

Denote the 3-rank of the ideal class group of k (resp. k') by r (resp. s). Then it holds that r = s + 1 (cf. [6, Theorem 3]). Therefore it is sufficient to show that $s \ge 2$.

For an element α of a quadratic field k such that $N_k(\alpha) = m^3$ for some $m \in \mathbb{Z}$, define the cubic polynomial f_{α} by

$$f_{\alpha}(X) = X^3 - 3mX - \operatorname{Tr}_k(\alpha),$$

where N_k and Tr_k denote the norm map and the trace map of k/\mathbb{Q} , respectively.

The following proposition, which combined [4, Lemma 1], [5, Proposition 6.5], [9, Theorem 1] (see Proposition 2.2) and [8, Lemma 3.2], is one of the main ingredients in the proof of our theorem.

Proposition 2.1. Let d be an integer with $d \notin \mathbb{Z}^2 \cup (-3\mathbb{Z}^2)$ and put $k = \mathbb{Q}(\sqrt{d})$ and $k' = \mathbb{Q}(\sqrt{-3d})$. Let α and β be integers in k^{\times} whose norms are cubic in \mathbb{Z} . Then we have

- (1) The polynomial f_{α} is reducible over \mathbb{Q} if and only if α is cubic in k.
- (2) If f_α is irreducible over Q, then the splitting field E_α of f_α over Q is a cyclic cubic extension of k' unramified outside S and E_α has a cubic subfield K with v₃(D_K) ≠ 5, where S is the set of all the prime divisors of 3 gcd(N_k(α), Tr_k(α)) and D_K is the discriminant of K.
- (3) The splitting fields of f_{α} and f_{β} over \mathbb{Q} are distinct if and only if neither $\alpha\beta$ nor $\overline{\alpha}\beta$ is cubic in k, where $\overline{\alpha}$ is the conjugate of α in k.

Next we extract some results from Llorente and Nart [9, Theorem 1].

Proposition 2.2. Suppose that the cubic polynomial

$$F(X) = X^3 - aX - b, \quad a, b \in \mathbb{Z},$$

is irreducible over \mathbb{Q} , and that either $v_p(a) < 2$ or $v_p(b) < 3$ holds for every prime p. Let θ be a root of F(X), and put $K = \mathbb{Q}(\theta)$. Then we have

Download English Version:

https://daneshyari.com/en/article/4593115

Download Persian Version:

https://daneshyari.com/article/4593115

Daneshyari.com