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In this paper, we use the generating function of the Bernoulli 
polynomials to introduce a number of infinite families of linear 
recurrence relations for the Riemann zeta function at positive 
even integer arguments, ζ(2n).
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1. Introduction

The Riemann zeta function or Euler–Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns
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is probably the most important, fascinating, challenging and mysterious object of modern 
mathematics, in spite of its utter simplicity. This function is defined over the com-
plex plane and plays a pivotal role in analytic number theory having applications in 
physics, probability theory, applied statistics and other fields of mathematics. There is 
an enormous amount of literature on the Riemann zeta function. The classical papers by 
Abramowitz and Stegun [1], Apostol [3], Berndt [5], Everest, Röttger and T. Ward [9], 
Ireland and Rosen [10], Murty and Reece [17], and Weil [21] contain excellent additional 
material related to this article.

Originally the Riemann zeta function was defined for real arguments by Euler as

ζ(x) =
∞∑

n=1

1
nx

, x > 1.

Euler first started to develop the theory of this function and obtained in 1734 the famous 
formula for even positive zeta values

ζ(2n) = (−1)n+1 (2π)2n

2 · (2n)!B2n, (1)

where n is a positive integer and Bn is the n-th Bernoulli number. There are many proofs 
of this formula, some of them elementary, see, e.g., [2,4,5,7,18,20,22,23].

Due to Euler’s formula, linear recurrence relations for the Bernoulli numbers can be 
transformed into linear recurrence relations for the Riemann zeta function at even inte-
ger arguments. Recently, Merca [16] considered the following relation between Bernoulli 
numbers, binomial coefficients and powers of 2

n∑
k=0

(
n

k

)
2kBk = (2 − 2n)Bn,

and obtained two recurrence relations for the Riemann zeta function with even argu-
ments.

Theorem 1.1. For n > 0,

(−1)n π2n · n
(2n + 1)! +

n−1∑
k=0

(−1)k π2k

(2k + 1)!ζ(2n− 2k) = 0. (2)

Theorem 1.2. For n > 0,

ζ(2n) + 22n−1

22n − 1

(
(−1)n π2n

(2n)! ·
2n− 1

2 +
n−1∑
k=1

(−1)k π2k

(2k)!ζ(2n− 2k)
)

= 0.
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