On families of linear recurrence relations for the special values of the Riemann zeta function

Mircea Merca
Department of Mathematics, University of Craiova, Craiova, DJ 200585, Romania

A R T I C L E I N F O

Article history:

Received 8 March 2016
Received in revised form 29 June 2016
Accepted 30 June 2016
Available online 2 August 2016
Communicated by David Goss

MSC:

11B68
11 S 40
Keywords:
Bernoulli numbers
Bernoulli polynomials
Riemann zeta function
Recurrences

Abstract

In this paper, we use the generating function of the Bernoulli polynomials to introduce a number of infinite families of linear recurrence relations for the Riemann zeta function at positive even integer arguments, $\zeta(2 n)$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Riemann zeta function or Euler-Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

[^0]is probably the most important, fascinating, challenging and mysterious object of modern mathematics, in spite of its utter simplicity. This function is defined over the complex plane and plays a pivotal role in analytic number theory having applications in physics, probability theory, applied statistics and other fields of mathematics. There is an enormous amount of literature on the Riemann zeta function. The classical papers by Abramowitz and Stegun [1], Apostol [3], Berndt [5], Everest, Röttger and T. Ward [9], Ireland and Rosen [10], Murty and Reece [17], and Weil [21] contain excellent additional material related to this article.

Originally the Riemann zeta function was defined for real arguments by Euler as

$$
\zeta(x)=\sum_{n=1}^{\infty} \frac{1}{n^{x}}, \quad x>1
$$

Euler first started to develop the theory of this function and obtained in 1734 the famous formula for even positive zeta values

$$
\begin{equation*}
\zeta(2 n)=(-1)^{n+1} \frac{(2 \pi)^{2 n}}{2 \cdot(2 n)!} B_{2 n} \tag{1}
\end{equation*}
$$

where n is a positive integer and B_{n} is the n-th Bernoulli number. There are many proofs of this formula, some of them elementary, see, e.g., [2,4,5,7,18,20,22,23].

Due to Euler's formula, linear recurrence relations for the Bernoulli numbers can be transformed into linear recurrence relations for the Riemann zeta function at even integer arguments. Recently, Merca [16] considered the following relation between Bernoulli numbers, binomial coefficients and powers of 2

$$
\sum_{k=0}^{n}\binom{n}{k} 2^{k} B_{k}=\left(2-2^{n}\right) B_{n}
$$

and obtained two recurrence relations for the Riemann zeta function with even arguments.

Theorem 1.1. For $n>0$,

$$
\begin{equation*}
(-1)^{n} \frac{\pi^{2 n} \cdot n}{(2 n+1)!}+\sum_{k=0}^{n-1}(-1)^{k} \frac{\pi^{2 k}}{(2 k+1)!} \zeta(2 n-2 k)=0 . \tag{2}
\end{equation*}
$$

Theorem 1.2. For $n>0$,

$$
\zeta(2 n)+\frac{2^{2 n-1}}{2^{2 n}-1}\left((-1)^{n} \frac{\pi^{2 n}}{(2 n)!} \cdot \frac{2 n-1}{2}+\sum_{k=1}^{n-1}(-1)^{k} \frac{\pi^{2 k}}{(2 k)!} \zeta(2 n-2 k)\right)=0
$$

https://daneshyari.com/en/article/4593116

Download Persian Version:

https://daneshyari.com/article/4593116

Daneshyari.com

[^0]: E-mail address: mircea.merca@profinfo.edu.ro.

