

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Counting algebraic points of bounded height on projective spaces

Quentin Guignard 1

A R T I C L E I N F O

Article history: Received 3 February 2016 Received in revised form 14 June 2016 Accepted 14 June 2016 Available online 3 August 2016 Communicated by David Goss

ABSTRACT

We prove new estimates on the number of algebraic points of fixed degree and bounded height on projective spaces over a given number field. These results extend previous works of Wolfgang Schmidt [13], Gao Xia [3] and Martin Widmer [18]. Our approach, based on zeta functions, also gives a new proof of Schanuel's theorem.

© 2016 Elsevier Inc. All rights reserved.

Keywords: Heights Algebraic points Height zeta functions

Contents

1.	Introduction	104
2.	Adelic vector bundles on arithmetic curves	107
3.	The zeta function of an adelic vector bundle and Schanuel's theorem	112
	Slopes estimates	
5.	Counting algebraic points	123
6.	The zeta function of quadratic discriminants	133
Refer	ences	140

E-mail address: quentin.guignard@ens.fr.

 $^{^{1\,}}$ This paper was written while the author was supported by the Ecole Normale Superieure.

1. Introduction

1.1. Setting

Let K be a number field. We normalize our valuations on the completions of K in such a way that the product formula

$$\prod_{v} |x|_v^{d_v} = 1$$

holds for any x in K^{\times} , where d_v is the degree of the extension K_v/\mathbb{Q}_v . If x is in K^{n+1} , then we set $||x||_v = \max_i |x_i|_v$ if v is non-archimedean and $||x||_v^2 = \sum_i |x_i|_v^2$ otherwise. This particular choice of norms gives a *height function*

$$H_K(x) = \prod_v ||x||_v^{d_v}$$

on $\mathbb{P}_{K}^{n}(K)$, which extends to $\mathbb{P}_{K}^{n}(\bar{K})$ via the formula $H_{K}(x) = H_{L}(x)^{\frac{1}{[L:K]}}$ where L contains K and x. In this paper we consider the following question: what is the order of magnitude of the cardinality of the set

$$\mathcal{N}(K, n, h, X) = \{ x \in \mathbb{P}_K^n(\bar{K}) \mid [K(x) : K] = h \text{ and } H_K(x)^h \le X \}$$

of algebraic points of \mathbb{P}^n_K of fixed degree h and height at most $X^{\frac{1}{h}}$, as X tends to infinity?

1.2. Description of our results

For h = 1, and arbitrary n and K, the set $\mathcal{N}(K, n, 1, X)$ is the set of K-rational points on \mathbb{P}^n_K of height bounded by X, and asymptotics for its cardinality were found by Schanuel [11] in 1979. He obtained the estimate

$$|\mathcal{N}(K, n, 1, X)| \sim A_{K, n, 1} X^{n+1}$$

as X tends to infinity, for some constant $A_{K,n,1} > 0$. We will give a new proof of Schanuel's theorem below (see Corollary 3.4.2).

For n = 1, and arbitrary h and K, asymptotics for $\mathcal{N}(K, n, h, X)$ have been found by Masser and Vaaler in [9] (see also Le Rudulier's work [8]). More precisely, they obtained

$$|\mathcal{N}(K,1,h,X)| \sim A_{K,1,h} X^{h+1}$$

as X tends to infinity, for some constant $A_{K,1,h} > 0$.

For $K = \mathbb{Q}$, the case h = 2 has been handled by Wolfgang Schmidt [13]. We extend his result to arbitrary K: Download English Version:

https://daneshyari.com/en/article/4593119

Download Persian Version:

https://daneshyari.com/article/4593119

Daneshyari.com