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On page 335 in his lost notebook, Ramanujan recorded 
without proofs two identities involving finite trigonometric 
sums and doubly infinite series of Bessel functions. These two 
identities are intimately connected with the classical circle
and divisor problems, respectively. There are three possible 
interpretations for the double series of these identities. The 
first identity has been proved under all three interpretations, 
and the second under two of them. Furthermore, several 
analogues of them were established, and they were extended 
to Riesz sum identities as well. In this paper, we provide 
analogous Riesz sum identities for the weighted sums of 
divisors functions, and in particular two of them yield a 
generalization of the Riesz sum identity for r6(n), where r6(n)
denotes the number of representations of n as a sum of six 
squares.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

On page 335 in his lost notebook [16], Ramanujan recorded two fascinating identities 
involving doubly infinite series of Bessel functions. It was shown that these identities have 
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connections with the classical circle and divisor problems [9,4]. To state Ramanujan’s 
claims, we need to define

F (x) =
{

[x], if x is not an integer,
x− 1

2 , if x is an integer,

where, as customary, [x] is the greatest integer less than or equal to x. Let Jν(z) denote 

the ordinary Bessel function of order ν, and Iν(z) := −Yν(z) +
2
π

cos(πν)Kν(z), where 

Yν(z) [19, p. 64, eq. (1)] is the Bessel function of the second kind of order ν and Kν(z)
[19, p. 78, eq. (6)] is the modified Bessel function of order ν.
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Entry 1.2. For x > 0 and 0 < θ < 1,
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In [9], Entry 1.1 was proved, but with the order of summation of the double series 
reversed, and the authors also derived the following corollary from Entry 1.1. Let r2(n)
denote the number of representations of the positive integer n as a sum of two squares, 
where representations with different signs and different orders are regarded as distinct 
representations.

Corollary 1.3. For any x > 0,
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(1.1)



Download English Version:

https://daneshyari.com/en/article/4593120

Download Persian Version:

https://daneshyari.com/article/4593120

Daneshyari.com

https://daneshyari.com/en/article/4593120
https://daneshyari.com/article/4593120
https://daneshyari.com

