

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Double tails of multiple zeta values

P. Akhilesh a,b,*,1

- ^a Harish-Chandra Research Institute, Allahabad, India
- ^b Institute of Mathematical Sciences, Chennai, India

ARTICLE INFO

Article history:
Received 9 December 2015
Received in revised form 25 June 2016
Accepted 26 June 2016
Available online 4 August 2016
Communicated by David Goss

MSC: 11M32

Keywords: Multiple zeta values Double tails

ABSTRACT

In this paper we introduce and study double tails of multiple zeta values. We show, in particular, that they satisfy certain recurrence relations and deduce from this a generalization of Euler's classical formula $\zeta(2) = 3\sum_{m=1}^{\infty} m^{-2} {2m \choose m}^{-1}$ to all multiple zeta values, as well as a new and very efficient algorithm for computing these values.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, **N** denotes the set of non-negative integers. A finite sequence $\mathbf{a} = (a_1, \dots, a_r)$ of positive integers is called *a composition*. The integer r is called the depth of **a** and the integer $k = a_1 + \dots + a_r$ the weight of **a**. The composition **a** is said to be admissible if either $r \geq 1$ and $a_1 \geq 2$, or **a** is the empty composition denoted \varnothing .

^{*} Correspondence to: Institute of Mathematical Sciences, Chennai, India. E-mail address: akhi@imsc.res.in.

¹ The second address is present address.

To each admissible composition $\mathbf{a} = (a_1, \dots, a_r)$, one associates a real number $\zeta(\mathbf{a})$. It is defined by the convergent series

$$\zeta(\mathbf{a}) = \sum_{n_1 > \dots > n_r > 0} n_1^{-a_1} \dots n_r^{-a_r},\tag{1}$$

when $r \ge 1$, and by $\zeta(\emptyset) = 1$ when r = 0. These numbers are called *multiple zeta values* or *Euler-Zagier numbers*.

A binary word is by definition a word w constructed on the alphabet $\{0,1\}$. Its letters are called bits. The number of bits of w is called the weight of w and denoted by |w|. The number of bits of w equal to 1 is called the depth of w. To any composition $\mathbf{a} = (a_1, \ldots, a_r)$, one associates the binary word

$$\mathbf{w}(\mathbf{a}) = \{0\}_{a_1 - 1} \dots \{0\}_{a_r - 1}$$
 (2)

where for each integer $u \ge 0$, $\{0\}_u$ denotes the binary word consisting of u bits equal to 0, and where $\mathbf{w}(\mathbf{a})$ is the empty word if \mathbf{a} is the empty composition. The weight of $\mathbf{w}(\mathbf{a})$ is equal to the weight of \mathbf{a} and its depth to the depth of \mathbf{a} .

We shall denote by W the set of binary words. When $\varepsilon, \varepsilon' \in \{0, 1\}$, ε W and $W_{\varepsilon'}$ denote the sets of binary words starting by ε and ending by ε' respectively, and $\varepsilon W_{\varepsilon'}$ their intersection.

The map \mathbf{w} is a bijection from the set of compositions onto the set of binary words not ending by 0. Non-empty compositions correspond to words in W_1 , and non-empty admissible compositions to words in ${}_0W_1$. Therefore a binary word will be called *admissible* if either it belongs to ${}_0W_1$, or it is empty.

Maxim Kontsevich has discovered that for each admissible composition \mathbf{a} , the multiple zeta value $\zeta(\mathbf{a})$ can be written as an iterated integral. More precisely, if $w = \varepsilon_1 \dots \varepsilon_k$ denotes the associated binary word $\mathbf{w}(\mathbf{a})$, we have

$$\zeta(\mathbf{a}) = \operatorname{It} \int_{0}^{1} (\omega_{\varepsilon_{1}}, \dots, \omega_{\varepsilon_{k}}) = \int_{1 > t_{1} > \dots > t_{k} > 0} f_{\varepsilon_{1}}(t_{1}) \dots f_{\varepsilon_{k}}(t_{k}) dt_{1} \dots dt_{k}$$
 (3)

where $\omega_i = f_i(t)dt$, with $f_0(t) = \frac{1}{t}$ and $f_1(t) = \frac{1}{1-t}$. We therefore often write this number $\zeta(w)$ instead of $\zeta(\mathbf{a})$.

Let $w = \varepsilon_1 \dots \varepsilon_k$ be a binary word. Its dual word is defined to be $\overline{w} = \overline{\varepsilon}_k \dots \overline{\varepsilon}_1$, where $\overline{0} = 1$ and $\overline{1} = 0$. When w is admissible, so is \overline{w} . We can therefore define the dual composition of an admissible composition \mathbf{a} to be the admissible composition $\overline{\mathbf{a}}$ such that $\mathbf{w}(\overline{\mathbf{a}})$ is dual to $\mathbf{w}(\mathbf{a})$. When \mathbf{a} has weight k and depth k, $\overline{\mathbf{a}}$ has weight k and depth k - r.

By the change of variables $t_i \mapsto 1 - t_{k+1-i}$ in the integral (3), one gets the following duality relation: for any admissible composition \mathbf{a} , we have

$$\zeta(\mathbf{a}) = \zeta(\overline{\mathbf{a}}). \tag{4}$$

Download English Version:

https://daneshyari.com/en/article/4593124

Download Persian Version:

https://daneshyari.com/article/4593124

<u>Daneshyari.com</u>