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In this paper, based on some early works, we establish 
a general continued fraction approximation for the nth 
root of the volume of the unit n-dimensional ball. Then 
related inequalities are given. Finally, for demonstrating the 
superiority of our new estimates and inequalities, we present 
some numerical computations.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: ludawei_dlut@163.com (D. Lu), alery110@126.com (P. Zhang).

http://dx.doi.org/10.1016/j.jnt.2016.06.010
0022-314X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jnt.2016.06.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:ludawei_dlut@163.com
mailto:alery110@126.com
http://dx.doi.org/10.1016/j.jnt.2016.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2016.06.010&domain=pdf


D. Lu, P. Zhang / Journal of Number Theory 170 (2017) 302–314 303

1. Introduction

In the recent past, some authors presented many asymptotic series and inequalities 
about the volume of the unit ball in Rn (see, e.g., [5]) for every integer n ≥ 1:

Ωn = π
n
2

Γ(n2 + 1) , (1.1)

where Γ denotes Euler’s gamma function.
According to [5], the sequence itself is not monotonic and it attains its maximum 

at n = 5. But as it was proved by Anderson in 1989 [4], Ω1/n
n strictly decreases with 

lim
n→∞

Ω1/n
n = 0. In 1997, Anderson and Qiu [3] showed that Ω1/(n ln n)

n is also strictly 

decreasing with lim
n→∞

Ω1/(n ln n)
n = e−1/2.

The monotonicity theorems provided in [4] and [7] lead to the following inequalities 
for every integer n ≥ 1

Ω
n

n+1
n+1 < Ωn, (1.2)

1 <
Ω2

n

Ωn−1Ωn+1
< 1 + 1

n
. (1.3)

Motivated by (1.2) and (1.3), Alzer [2] proved that for all integers n ≥ 1,

aΩ
n

n+1
n+1 ≤ Ωn < bΩ

n
n+1
n+1, (1.4)

with the best possible constants a = 2/
√
π = 1.12837 · · · and b =

√
e = 1.64872 · · · .

As an improvement of (1.4), Chen [6] provided the proof of the following double 
inequalities for every integer n ≥ 1:

1√
π(n + a)

(
2πe
n

)n
2

≤ Ωn <
1√

π(n + b)

(
2πe
n

)n
2

, (1.5)

where a = e/2 − 1, b = 1/3.
Furthermore, as it was proved by Mortici [12,13], the inequalities

−1
2 lnn + 1

2 (1 + ln 2π) − 1
2n lnnπ − λ(n)

<
1
n

ln Ωn < −1
2 lnn + 1

2 (1 + ln 2π) − 1
2n lnnπ − μ(n)

(1.6)

hold true for every integer n ≥ 1, where

μ(n) = 1
6n2 − 1

45n4 + 8
315n6 − 8

105n8 (1.7)

and
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