

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Number Theory

www.elsevier.com/locate/jnt

A new general asymptotic formula and inequalities involving the volume of the unit ball

Numbef
Thfory

扇

Dawei Lu ^a*,*b*,*∗, Peixuan Zhang ^a

^a *School of Mathematical Sciences, Dalian University of Technology, Dalian 116023, China* ^b *Department of Statistics, The Chinese University of Hong Kong, Shatin N.T., Hong Kong*

A R T I C L E I N F O A B S T R A C T

Article history: Received 11 May 2016 Received in revised form 15 May 2016 Accepted 14 June 2016 Available online 2 August 2016 Communicated by David Goss

MSC: 11A55 34M30 28A75

Keywords: Gamma function Continued fraction Rate of convergence The volume of the unit *n*-dimensional ball Inequalities Asymptotic formula

In this paper, based on some early works, we establish a general continued fraction approximation for the *n*th root of the volume of the unit *n*-dimensional ball. Then related inequalities are given. Finally, for demonstrating the superiority of our new estimates and inequalities, we present some numerical computations.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author. *E-mail addresses:* ludawei_dlut@163.com (D. Lu), alery110@126.com (P. Zhang).

<http://dx.doi.org/10.1016/j.jnt.2016.06.010> 0022-314X/© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the recent past, some authors presented many asymptotic series and inequalities about the volume of the unit ball in \mathbb{R}^n (see, e.g., [\[5\]\)](#page--1-0) for every integer $n \geq 1$:

$$
\Omega_n = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2} + 1)},\tag{1.1}
$$

where Γ denotes Euler's gamma function.

According to [\[5\],](#page--1-0) the sequence itself is not monotonic and it attains its maximum at $n = 5$. But as it was proved by Anderson in 1989 [\[4\],](#page--1-0) $\Omega_n^{1/n}$ strictly decreases with $\lim_{n\to\infty} \Omega_n^{1/n} = 0$. In 1997, Anderson and Qiu [\[3\]](#page--1-0) showed that $\Omega_n^{1/(n \ln n)}$ is also strictly decreasing with $\lim_{n\to\infty} \Omega_n^{1/(n\ln n)} = e^{-1/2}.$

The monotonicity theorems provided in [\[4\]](#page--1-0) and [\[7\]](#page--1-0) lead to the following inequalities for every integer $n \geq 1$

$$
\Omega_{n+1}^{\frac{n}{n+1}} < \Omega_n,\tag{1.2}
$$

$$
1 < \frac{\Omega_n^2}{\Omega_{n-1}\Omega_{n+1}} < 1 + \frac{1}{n}.\tag{1.3}
$$

Motivated by (1.2) and (1.3), Alzer [\[2\]](#page--1-0) proved that for all integers $n \geq 1$,

$$
a\Omega_{n+1}^{\frac{n}{n+1}} \le \Omega_n < b\Omega_{n+1}^{\frac{n}{n+1}},\tag{1.4}
$$

with the best possible constants $a = 2/\sqrt{\pi} = 1.12837 \cdots$ and $b = \sqrt{e} = 1.64872 \cdots$.

As an improvement of (1.4) , Chen $[6]$ provided the proof of the following double inequalities for every integer $n \geq 1$:

$$
\frac{1}{\sqrt{\pi(n+a)}} \left(\frac{2\pi e}{n}\right)^{\frac{n}{2}} \le \Omega_n < \frac{1}{\sqrt{\pi(n+b)}} \left(\frac{2\pi e}{n}\right)^{\frac{n}{2}},\tag{1.5}
$$

where $a = e/2 - 1$, $b = 1/3$.

Furthermore, as it was proved by Mortici [\[12,13\],](#page--1-0) the inequalities

$$
-\frac{1}{2}\ln n + \frac{1}{2}\left(1 + \ln 2\pi\right) - \frac{1}{2n}\ln n\pi - \lambda(n)
$$

<
$$
< \frac{1}{n}\ln \Omega_n < -\frac{1}{2}\ln n + \frac{1}{2}\left(1 + \ln 2\pi\right) - \frac{1}{2n}\ln n\pi - \mu(n)
$$
 (1.6)

hold true for every integer $n \geq 1$, where

$$
\mu(n) = \frac{1}{6n^2} - \frac{1}{45n^4} + \frac{8}{315n^6} - \frac{8}{105n^8} \tag{1.7}
$$

and

Download English Version:

<https://daneshyari.com/en/article/4593128>

Download Persian Version:

<https://daneshyari.com/article/4593128>

[Daneshyari.com](https://daneshyari.com)