# Advanced refinements of Young and Heinz inequalities 

M. Sababheh ${ }^{\text {a }}$, M.S. Moslehian ${ }^{\text {b,* }}$<br>${ }^{\text {a }}$ Department of Basic Sciences, Princess Sumaya University for Technology, Al Jubaiha, Amman 11941, Jordan<br>${ }^{\text {b }}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

## A R T I C L E I N F O

## Article history:

Received 17 April 2016
Received in revised form 31 August
2016
Accepted 31 August 2016
Available online 8 October 2016
Communicated by D. Goss

## MSC:

15A39
15B48
47A30
47A63
Keywords:
Young's inequality
Norm inequalities
Heinz inequality

## A B S T R A C T

In this article, we prove several multi-term refinements of Young type inequalities for both real numbers and operators improving several known results. Among other results, we prove that for all $0 \leq \nu \leq 1$ and each $N \in \mathbb{N}$,

$$
\begin{aligned}
& A \#_{\nu} B+\sum_{j=1}^{N} s_{j}(\nu)\left(A \#_{\alpha_{j}(\nu)} B+A \#_{2^{1-j}+\alpha_{j}(\nu)} B\right. \\
& \left.\quad-2 A \#_{2^{-j}+\alpha_{j}(\nu)} B\right) \leq A \nabla_{\nu} B,
\end{aligned}
$$

for the positive operators $A$ and $B$, where $s_{j}(\nu)$ and $\alpha_{j}(\nu)$ are certain functions. Moreover, some new Heinz type inequalities involving the Hilbert-Schmidt norm are established.
© 2016 Elsevier Inc. All rights reserved.

[^0]
## 1. Introduction

The simple inequality

$$
\begin{equation*}
a^{\nu} b^{1-\nu} \leq \nu a+(1-\nu) b, a, b>0,0 \leq \nu \leq 1 \tag{1.1}
\end{equation*}
$$

is the celebrated Young inequality. Even though this inequality looks very simple, it is of great interest in operator theory. We refer the reader to $[5,6,3,9,10,14]$ as a sample of the extensive use of this inequality in this field. Refining this inequality has taken the attention of many researchers in the field, where adding a positive term to the left side is possible.

Among the first refinements of this inequality is the squared version proved in [3]

$$
\begin{equation*}
\left(a^{\nu} b^{1-\nu}\right)^{2}+\min \{\nu, 1-\nu\}^{2}(a-b)^{2} \leq(\nu a+(1-\nu) b)^{2} . \tag{1.2}
\end{equation*}
$$

Later, the authors in [5] obtained the other interesting refinement

$$
\begin{equation*}
a^{\nu} b^{1-\nu}+\min \{\nu, 1-\nu\}(\sqrt{a}-\sqrt{b})^{2} \leq \nu a+(1-\nu) b . \tag{1.3}
\end{equation*}
$$

A common fact about the above refinements is having one refining term.
In the recent paper [13], some reverses and refinements of Young's inequality were presented, with one or two refining terms. In particular, it is proved that

$$
\left\{\begin{array}{cc}
a^{\nu} b^{1-\nu}+\nu(\sqrt{a}-\sqrt{b})^{2}+r_{0}(\sqrt[4]{a b}-\sqrt{b})^{2} \leq \nu a+(1-\nu) b, & 0<\nu \leq \frac{1}{2}  \tag{1.4}\\
a^{\nu} b^{1-\nu}+(1-\nu)(\sqrt{a}-\sqrt{b})^{2}+r_{0}(\sqrt[4]{a b}-\sqrt{a})^{2} \leq \nu a+(1-\nu) b, & \frac{1}{2}<\nu \leq 1
\end{array}\right.
$$

where $r_{0}=\min \{2 r, 1-2 r\}$ for $r=\min \{\nu, 1-\nu\}$. These inequalities refine (1.3) by adding a second refining term to the original Young's inequality. In the same paper, the following reversed versions have been proved too.

$$
\left\{\begin{array}{cc}
\nu a+(1-\nu) b+r_{0}(\sqrt[4]{a b}-\sqrt{a})^{2} \leq a^{\nu} b^{1-\nu}+(1-\nu)(\sqrt{a}-\sqrt{b})^{2}, & 0 \leq \nu \leq \frac{1}{2}  \tag{1.5}\\
\nu a+(1-\nu) b+r_{0}(\sqrt[4]{a b}-\sqrt{b})^{2} \leq a^{\nu} b^{1-\nu}+\nu(\sqrt{a}-\sqrt{b})^{2}, & 0 \leq \nu \leq \frac{1}{2}
\end{array}\right.
$$

where $r_{0}=\min \{2 r, 1-2 r\}$ for $r=\min \{\nu, 1-\nu\}$. These inequalities refine the reversed version $\nu a+(1-\nu) b \leq a^{\nu} b^{1-\nu}+\max \{\nu, 1-\nu\}(\sqrt{a}-\sqrt{b})^{2}$; cf. [6].

Moreover, it is proved in [13] that

$$
\left\{\begin{align*}
(\nu a+(1-\nu) b)^{2}+r_{0}(\sqrt{a b}-a)^{2} \leq\left(a^{\nu} b^{1-\nu}\right)^{2}+(1-\nu)^{2}(a-b)^{2}, & 0 \leq \nu \leq \frac{1}{2}  \tag{1.6}\\
(\nu a+(1-\nu) b)^{2}+r_{0}(\sqrt{a b}-b)^{2} \leq\left(a^{\nu} b^{1-\nu}\right)^{2}+\nu^{2}(a-b)^{2}, & 0 \leq \nu \leq \frac{1}{2}
\end{align*}\right.
$$

refining the squared version $(\nu a+(1-\nu) b)^{2} \leq\left(a^{\nu} b^{1-\nu}\right)^{2}+\max \{\nu, 1-\nu\}^{2}(a-b)^{2}$ of [6].

# https://daneshyari.com/en/article/4593143 

Download Persian Version:
https://daneshyari.com/article/4593143

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: sababheh@yahoo.com, sababheh@psut.edu.jo (M. Sababheh), moslehian@um.ac.ir (M.S. Moslehian).

