

Contents lists available at ScienceDirect

Journal of Number Theory

A consequence of Greenberg's generalized conjecture on Iwasawa invariants of \mathbb{Z}_p -extensions

Takenori Kataoka

Graduate School of Mathematical Sciences, The University of Tokyo, Japan

ARTICLE INFO

Article history: Received 29 March 2016 Received in revised form 29 August 2016

Accepted 29 August 2016 Available online 11 October 2016 Communicated by D. Goss

Keywords:
Iwasawa theory
Greenberg's generalized conjecture
Iwasawa invariants

ABSTRACT

For a prime number p and a number field k, let \tilde{k} be the compositum of all \mathbb{Z}_p -extensions of k. Greenberg's Generalized Conjecture (GGC) claims the pseudo-nullity of the unramified Iwasawa module $X(\tilde{k})$ of \tilde{k} . It is known that, when k is an imaginary quadratic field, GGC has a consequence on the Iwasawa invariants associated to \mathbb{Z}_p -extensions of k. In this paper, we partially generalize it to arbitrary number fields k.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let p be a fixed prime number. We fix an algebraic closure of the field \mathbb{Q} of rational numbers and any algebraic extension of \mathbb{Q} is considered to be contained in it.

First we introduce some general notions in Iwasawa theory. For any algebraic extension F of \mathbb{Q} , let L(F) be the maximal unramified pro-p abelian extension of F and let X(F) be the Galois group $\operatorname{Gal}(L(F)/F)$. When k is a number field (i.e. a finite extension of \mathbb{Q}), it is known by class field theory that X(k) is canonically isomorphic to the p-Sylow subgroup of the ideal class group of k. The structure of X(F) is one of the main objects of study in number theory.

E-mail address: tkataoka@ms.u-tokyo.ac.jp.

Let k be a number field and d a positive integer. When K/k is a \mathbb{Z}_p^d -extension, let $\Lambda(K/k)$ be the completed group ring $\mathbb{Z}_p[[\operatorname{Gal}(K/k)]]$, which is often called the Iwasawa algebra. It is known that $\Lambda(K/k)$ is non-canonically isomorphic to the ring of formal power series $\mathbb{Z}_p[[T_1,\ldots,T_d]]$ and, in particular, $\Lambda(K/k)$ is a regular local ring. In fact, if σ_1,\ldots,σ_d constitute a \mathbb{Z}_p -basis of $\operatorname{Gal}(K/k)$, then an isomorphism $\Lambda(K/k) \stackrel{\sim}{\to} \mathbb{Z}_p[[T_1,\ldots,T_d]]$ is obtained by sending σ_i to $1+T_i$. Since L(K)/k is a Galois extension, we have the natural action of $\operatorname{Gal}(K/k)$ on X(K) via the inner automorphisms. This action defines the natural $\Lambda(K/k)$ -module structure on X(K). It is known that X(K) is a finitely generated torsion $\Lambda(K/k)$ -module. (See [4]. Although the statement there is the case where $K = \tilde{k}$ defined below, one can modify the proof to arbitrary multiple \mathbb{Z}_p -extensions.)

In particular, for any number field k, let \tilde{k} be the compositum of all \mathbb{Z}_p -extensions of k. It is known that \tilde{k}/k is a $\mathbb{Z}_p^{r_2(k)+1+\delta(k,p)}$ -extension, where $r_2(k)$ is the number of complex places of k and $\delta(k,p)$ is the Leopoldt's defect of (k,p) (see [14, Proposition (10.3.20)]). We put $d(k) = r_2(k) + 1 + \delta(k,p)$, so \tilde{k}/k is a $\mathbb{Z}_p^{d(k)}$ -extension.

We also need some ring theoretic materials [14, Chapter V, §1]. In general, let Λ be a noetherian integrally closed domain and X a Λ -module. We say that X is a pseudo-null Λ -module and write $X \sim 0$ or more precisely $X \sim_{\Lambda} 0$ if X is finitely generated and the height of the annihilator ideal of X is greater than or equal to 2. A homomorphism $X \to Y$ of Λ -modules is said to be a pseudo-isomorphism if its kernel and cokernel are both pseudo-null. If there exists a pseudo-isomorphism $X \to Y$, we write $X \sim Y$ or $X \sim_{\Lambda} Y$.

Now Greenberg's Generalized Conjecture (GGC) claims the following.

Conjecture 1.1 ([6, Conjecture 3.5]). For any number field k, $X(\tilde{k})$ is pseudo-null as a $\Lambda(\tilde{k}/k)$ -module.

We say that GGC holds for (k,p) if $X(\tilde{k})$ is pseudo-null as a $\Lambda(\tilde{k}/k)$ -module. Although GGC is still an open problem, there are some cases where GGC is known to be true. For example, GGC holds for (k,p) if k is an imaginary quadratic field and p does not divide the class number of k ([13, Proposition 3.A]). Moreover, there is a sufficient condition for GGC to hold in the case where k is a CM-field and p splits completely in k/\mathbb{Q} ([2, Theorem 2]).

In this paper we focus on some consequences of GGC on the size of X(K) for (multiple) \mathbb{Z}_p -extensions K of k. To state the main result, recall the definitions of the Iwasawa λ, μ, ν -invariants of a \mathbb{Z}_p -extension K/k. Let k_n be the n-th layer of K/k, in other words, the intermediate field of K/k such that $\operatorname{Gal}(K/k_n) = \operatorname{Gal}(K/k)^{p^n}$. Then there are unique non-negative integers $\lambda(K/k), \mu(K/k)$ and an integer $\nu(K/k)$ such that

$$\sharp X(k_n) = p^{\lambda(K/k)n + \mu(K/k)p^n + \nu(K/k)}$$

for sufficiently large n (see [16, Theorem 13.13]). In the case where k is an imaginary quadratic field, the following theorem is known.

Download English Version:

https://daneshyari.com/en/article/4593144

Download Persian Version:

https://daneshyari.com/article/4593144

<u>Daneshyari.com</u>