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An asymptotic approximation of Wallis’ sequence m �→
Wm :=

m∏
k=1

4k2

4k2−1 is presented as

Wm =
mπ

2m + 1
exp

(
2σq(m)

)
· exp

(
rq(m)

)
,

where

σq(x) :=
�q/2�∑
i=1

(
1 − 4−i

)
B2i

i(2i− 1) · x2i−1

(Bk are the Bernoulli coefficients),

and where

|rq(m)| < r∗q (m) :=
2π(q − 2)!
3(2mπ)q−1 ,

for any integers m ≥ 1 and q ≥ 2 .

Parameters m and q control the error factor exp
(
rq(m)

)
.
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1. Introduction

The Wallis sequence 
(
Wn

)
n≥1 defined as

Wn :=
n∏

k=1

4k2

4k2 − 1 (1)

is clearly strictly increasing and was used by English mathematician Wallis1 in 1655 
[15,16] to introduce π as a limit:

π

2 = lim
n→∞

Wn. (2)

This is in the history the first presentation of π as a limit of an analytically given se-
quence. Wallis’ sequence was investigated by many authors since it is closely related to 
the constant π, see for example [2–5,15]. Although Wallis’ sequence was usually consid-
ered as unsuitable for numerical computation of π, it was shown in [8] and [13] that it 
is usable also for computation of some decimals of π. Moreover, knowing the value of π, 
it is possible to obtain rather good approximations of Wn. But Wn is closely related 
with Catalan numbers cn := 1

n+1
(2n
n

)
which play important role in combinatorics and 

the theory of graphs, see e.g. [7]. The connection is given through the formula

cn = 4n

(n + 1)
√

2n + 1
· 1√

Wn

(n ∈ N).

All these and similar facts have attracted mathematicians to study Wallis’ sequence 
for a very long period of time. Consequently, during the time a great amount of articles 
about Wallis’ sequence have been published, recently [6,8,11,13,14].

In [6] are given the following three main results:
[6, Theorem 1] For all n ∈ N,

π

2

(
1 − 1

4n + α

)
< Wn <

π

2

(
1 − 1

4n + β

)
with the best possible constants α = 5/2 and β = 2.614 . . . .
[6, Theorem 2] For all n ∈ N,

π

2

(
1 − 1

4n + 5/2

)λ

< Wn <
π

2

(
1 − 1

4n + 5/2

)μ

with the best possible constants λ = 1 and μ = 0.981 . . . .

1 John Wallis, 1616–1703.
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