

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Number Theory

www.elsevier.com/locate/jnt

Partial sums of biased random multiplicative functions

JUMBEF
Theody

M. Aymone ^a*,*∗, V. Sidoravicius ^b*,*c*,*^d

^a *Departamento de Matemática, Universidade Federal de Minas Gerais,* Av. Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
 $\stackrel{b}{\sim}$ Courant Institute of Mathematical Sciences, New York, United States
 $\stackrel{c}{\sim} NYU-ECNU$ Institute of Mathematical Sciences at NYU Shanghai, C *12247-016, Brazil*

A R T I C L E I N F O A B S T R A C T

Article history: Received 21 July 2015 Received in revised form 12 August 2016 Accepted 15 August 2016 Available online 21 October 2016 Communicated by K. Soundararajan

Keywords: Random multiplicative functions Probabilistic Number Theory Riemann Hypothesis

Let P be the set of the primes. We consider a class of random multiplicative functions *f* supported on the squarefree integers, such that ${f(p)}_p \in \mathcal{P}$ form a sequence of ± 1 valued independent random variables with $\mathbb{E} f(p) < 0$, $\forall p \in \mathcal{P}$. The function *f* is called strongly biased (towards classical Möbius function), if $\sum_{p \in \mathcal{P}} \frac{f(p)}{p} = -\infty$ *a.s.*, and it is weakly biased if $\sum_{p \in \mathcal{P}} \frac{f(p)}{p}$ converges *a.s.* Let $M_f(x) := \sum_{n \leq x} f(n)$. We establish a number of necessary and sufficient conditions for $M_f(x) = o(x^{1-\alpha})$ for some $\alpha > 0$, *a.s.*, when *f* is strongly or weakly biased, and prove that the Riemann Hypothesis holds if and only if $M_{f_\alpha}(x) = o(x^{1/2+\epsilon})$ for all $\epsilon > 0$ *a.s.*, for each $\alpha > 0$, where $\{f_{\alpha}\}_\alpha$ is a certain family of weakly biased random multiplicative functions.

© 2016 Elsevier Inc. All rights reserved.

Corresponding author.

<http://dx.doi.org/10.1016/j.jnt.2016.08.020> 0022-314X/© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: marco@mat.ufmg.br (M. Aymone), vs1138@nyu.edu (V. Sidoravicius).

1. Introduction

A function $f : \mathbb{N} \to \mathbb{C}$ is called multiplicative function if $f(1) = 1$ and $f(nm) =$ $f(n)f(m)$ whenever *n* and *m* are coprime. Let $\mathcal P$ be the set of the prime numbers. In this paper we consider a class of multiplicative functions *f* which are supported on the square-free integers, *i.e.* $f(n) = 0$ for all $n \in \mathbb{N}$, for which $\exists p \in \mathcal{P}$ such that $p^2|n$. A function f from this class is called random (binary) multiplicative function if ${f(p)}_{p \in \mathcal{P}}$ form a sequence of ± 1 valued independent random variables.

Let μ be the Möbius function, the multiplicative function supported on the square-free integers with $\mu(p) = -1 \,\forall p \in \mathcal{P}$. We say that *f* is *biased* (towards μ) if $\mathbb{E} f(p) < 0 \,\forall p \in \mathcal{P}$. If *f* is biased and $\sum_{p \in \mathcal{P}} \frac{f(p)}{p}$ converges *a.s.*, we say that *f* is *weakly biased*; otherwise, if $\sum_{p \in \mathcal{P}} \frac{f(p)}{p} = -\infty$ *a.s.*, we say that *f* is *strongly biased*. In the case $(f(p))_{p \in \mathcal{P}}$ is i.i.d. *p*∈P with $\mathbb{E}f(2) = 0$, we say that f is an unbiased random multiplicative function.

Further, for $x \geq 1$, we denote $M_f(x) := \sum_{n \leq x} f(n)$.

A classical result of J.E. Littlewood, [\[19\],](#page--1-0) states that the Riemann Hypothesis (RH) holds if and only if the Mertens' function $M_{\mu}(x) = o(x^{1/2+\epsilon})$, $\forall \epsilon > 0$. This criterion led A. Wintner to investigate what happens with the partial sums $M_f(x)$ of a random multiplicative function *f*. In [\[27\],](#page--1-0) A. Wintner proved that if *f* is unbiased, then $M_f(x)$ $o(x^{1/2+\epsilon})$, $\forall \epsilon > 0$ *a.s.* Since then, many results pursuing the exact order of *M_f*(*x*) have been proved [\[10,13,2,14,18\],](#page--1-0) and also Central Limit Theorems have been established [\[16,15,7\].](#page--1-0)

These results naturally raise a question of what can be said for $M_f(x)$ in the case of biased *f*. Since we have A. Wintner's Theorem in the case that *f* is unbiased, by the probabilistic line of reasoning, a natural prediction is that, if *f* has a sufficiently small bias, then $M_f(x) = o(x^{1/2+\epsilon})$, $\forall \epsilon > 0$ *a.s.* Further, by the same probabilistic point of view and Littlewood's criterion, one can expect to reformulate RH in terms of $M_f(x)$ in the case that *f* has a strong bias.

To illustrate this reasoning, consider a strongly biased *f* such that the series $\sum_{p \in \mathcal{P}} (1 +$ $E f(p)$) converges. In this case, we informally say that *f* is essentially μ , since by the Borel–Cantelli Lemma, the random subset of primes $\{p \in \mathcal{P} : f(p) \neq \mu(p)\}\$ is finite *a.s.* In particular, $M_{\mu}(x)$ and $M_{f}(x)$ have essentially the same asymptotic behavior (see [Lemma A.3](#page--1-0) and [Lemma A.4\)](#page--1-0). On the other hand, a similar argument shows that if $\sum_{p \in \mathcal{P}} \mathbb{E} f(p)$ converges, then *f* is essentially unbiased and hence, as a consequence from Wintner's Theorem, $M_f(x) = o(x^{1/2+\epsilon})$ for all $\epsilon > 0$ *a.s.*

In this paper we are interested in determining the range of biased f such that $M_f(x) =$ *o*($x^{1/2+\epsilon}$) ∀ ϵ > 0 *a.s.*, and the range of biased *f* such that we can reformulate RH in terms of the asymptotic behavior of $M_f(x)$. In the case that f has a small bias, our first result states:

Theorem 1.1. Let $\alpha > 0$ and f_{α} is such that $\mathbb{E}f_{\alpha}(p) = -\frac{1}{p^{\alpha}} \ \forall p \in \mathcal{P}$. Then the Riemann hypothesis holds if and only if $M_{f_\alpha}(x) = o(x^{1/2+\epsilon})$ for all $\epsilon > 0$ a.s., for each $\alpha > 0$.

Download English Version:

<https://daneshyari.com/en/article/4593151>

Download Persian Version:

<https://daneshyari.com/article/4593151>

[Daneshyari.com](https://daneshyari.com)