

Contents lists available at ScienceDirect

Journal of Number Theory

On the field of definition of a cubic rational function and its critical points

Xander Faber a, Bianca Thompson b,*

ARTICLE INFO

Article history:
Received 28 October 2015
Received in revised form 25
February 2016
Accepted 26 February 2016
Available online 1 April 2016
Communicated by David Goss

Keywords:
Critical points
Cubic rational functions
Field of definition
B. and M. Shapiro conjecture

ABSTRACT

Using essentially only algebra, we give a proof that a cubic rational function over \mathbb{C} with real critical points is equivalent to a real rational function. We also show that the natural generalization to \mathbb{Q}_p fails unless p=3.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a field of characteristic zero with algebraic closure \bar{K} . We say that two rational functions $f,g\in \bar{K}(z)$ are **equivalent** if there is a fractional linear transformation $\sigma\in \bar{K}(z)$ such that $f=\sigma\circ g$. Viewing f and g as endomorphisms of the projective line, we see that they are equivalent if they differ by a change of coordinate on the target. Note that equivalent rational functions have the same critical points. This is the equivalence

E-mail addresses: awfaber@super.org (X. Faber), bthompson@smith.edu (B. Thompson).

^a Center for Computing Sciences, Institute for Defense Analyses, Bowie, MD, United States

^b Smith College, Northampton, MA, United States

^{*} Corresponding author.

relation used in the study of *dessins d'enfants*, as opposed to the equivalence used for dynamical systems.

Theorem 1.1 (Eremenko/Gabrielov). If $f \in \mathbb{C}(z)$ is a rational function with real critical points, then f is equivalent to a rational function with real coefficients.

By relating equivalence classes of rational functions with special Schubert cycles, Goldberg [3] showed that there are at most

$$\rho(d) := \frac{1}{d} \binom{2d-2}{d-1}$$

equivalence classes of degree d rational functions with a given set of critical points. Eremenko and Gabrielov [1,2] used topological, combinatorial, and complex analytic techniques to *construct* exactly $\rho(d)$ real rational functions with a given set of real critical points, which proves the theorem.

But the correspondence between a rational function and its critical points is purely algebraic, via roots of the derivative. This raises the question of whether a truly elementary proof of the above result exists—one that does not use any analysis or topology. We give such a proof for cubic functions in this note.

For a field K and a nonconstant rational function $\phi \in K(z)$, we say that K is ϕ -perfect if the map $\phi \colon \mathbb{P}^1(K) \to \mathbb{P}^1(K)$ is surjective. For example, if K has characteristic p and $\phi(z) = z^p$, then K is ϕ -perfect if and only if it is a perfect field in the usual sense.

Theorem 1.2. Let K be a field of characteristic zero with algebraic closure \bar{K} . The following statements are equivalent:

- (1) Any cubic rational function $f \in \bar{K}(z)$ with K-rational critical points is equivalent to a rational function in K(z).
- (2) K is ϕ -perfect for the function

$$\phi(z) = -\frac{z^2 + 2z}{2z + 3}.$$

(3) $(2y-1)^2+3$ is a square in K for every $y \in K$.

Theorem 1.2 will be proved in § 2.

Corollary 1.3. If $f \in \mathbb{C}(z)$ is a cubic rational function with real critical points, then f is equivalent to a real rational function.

Proof. Evidently $(2y-1)^2+3$ is a square in \mathbb{R} for every $y\in\mathbb{R}$. \square

Download English Version:

https://daneshyari.com/en/article/4593155

Download Persian Version:

https://daneshyari.com/article/4593155

<u>Daneshyari.com</u>