On partitions with fixed number of even-indexed and odd-indexed odd parts

Alexander Berkovich *, Ali Kemal Uncu
Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611, USA

A R T I C L E I N F O

Article history:

Received 16 December 2015
Accepted 9 February 2016
Available online 19 April 2016
Communicated by David Goss

$M S C$:

05A15
05A17
05A19
11B34
11B37
11B75
11P81
11P83
33D15

Keywords:

Partitions with parity restrictions
and bounds
Partition identities
q-Series
BG-rank
Alternating sum of parts
Rogers-Szegő polynomials
(Little) Göllnitz identity

Abstract

This article is an extensive study of partitions with fixed number of odd and even-indexed odd parts. We use these partitions to generalize recent results of C. Savage and A. Sills. Moreover, we derive explicit formulas for generating functions for partitions with bounds on the largest part, the number of parts and with a fixed value of BG-rank or with a fixed value of alternating sum of parts. We extend the work of C. Boulet, and as a result, obtain a four-variable generalization of Gaussian binomial coefficients. In addition, we provide combinatorial interpretation of the BerkovichWarnaar identity for Rogers-Szegő polynomials.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction and notation

A partition π is a non-increasing finite sequence $\pi=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ of positive integers. The elements λ_{i} that appear in the sequence π are called parts of π. For positive integers i, we call $\lambda_{2 i-1}$ odd-indexed parts, and $\lambda_{2 i}$ even indexed parts of π. We say π is a partition of n, if the sum of all parts of π is equal to n. Conventionally the empty sequence is considered as the unique partition of zero. We will abide by this convention. Partitions can be represented graphically in multiple ways. For consistency, we are going to focus on representing partitions using Ferrers diagrams. The 2-residue Ferrers diagram of partition π is given by taking the ordinary Ferrers diagram drawn with boxes instead of dots and filling these boxes using alternating 0 's and 1 's starting from 0 on odd-indexed parts and 1 on even-indexed parts. We can exemplify 2 -residue diagrams with $\pi=(12,10,7,5,2)$ in Table 1.

Table 1
2-residue Ferrers diagram of the partition $\pi=(12,10,7,5,2)$.

In this paper, we consider partitions with fixed number of odd and even-indexed odd parts. We start our discussion by considering partitions into distinct parts. In this way we are led to Theorem 1.1.

Theorem 1.1. For non-negative integers i, j, and n

$$
p(i, j, n)=p^{\prime}(i, j, n)
$$

where $p(i, j, n)$ is the number of partitions of n into distinct parts with i odd-indexed odd parts and j even-indexed odd parts and $p^{\prime}(i, j, n)$ is the number of partitions of n into distinct parts with i parts that are congruent to 1 modulo 4, and j parts that are congruent to 3 modulo 4 .

We can demonstrate Theorem 1.1 for special choices $i=j=1$, and $n=14$ in Table 2. Let $P(i, j, q)$ be the generating function for $p(i, j, n)$:

$$
P(i, j, q)=\sum_{n \geq 0} p(i, j, n) q^{n}
$$

Let L, k, n, m be non-negative integers. We will use standard notations in [3] and [12].

https://daneshyari.com/en/article/4593156

Download Persian Version:

https://daneshyari.com/article/4593156

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: alexb@ufl.edu (A. Berkovich), akuncu@ufl.edu (A.K. Uncu).

