Are number fields determined by Artin L-functions?

Jürgen Klüners ${ }^{\text {a,* }}$, Florin Nicolae ${ }^{\text {b }}$
${ }^{\text {a }}$ Mathematisches Institut der Universität Paderborn, Warburger Str. 100, 33098
Paderborn, Germany
b "Simion Stoilow" Institute of Mathematics of the Romanian Academy, P.O. BOX
1-764, RO-014700 Bucharest, Romania

A R T I C L E I N F O

Article history:
Received 24 November 2015
Received in revised form 31 March
2016
Accepted 31 March 2016
Available online 29 April 2016
Communicated by David Goss

MSC:

11R42
Keywords:
Number fields
Galois extension
Artin L-function

A B S T R A C T

Let k be a number field, K / k a finite Galois extension with Galois group G, χ a faithful character of G. We prove that the Artin L-function $L(s, \chi, K / k)$ determines the Galois closure of K over \mathbb{Q}. In the special case $k=\mathbb{Q}$ it also determines the character χ.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a number field, K / k a finite Galois extension with Galois group G, χ a faithful character of G. In Theorem 6 we prove that the Artin L-function $L(s, \chi, K / k)$ determines the Galois closure \tilde{K} of K over \mathbb{Q}. In the special case $k=\mathbb{Q}$ we prove in Theorem 5 that the Artin L-function determines K and the (faithful) character χ. We

[^0]give examples that in the case $k \neq \mathbb{Q}$ we cannot expect more, especially there exist non-isomorphic arithmetically equivalent fields which cannot be distinguished by Artin L-functions.

The restriction to faithful characters is natural: let K / k be a finite normal extension with $\operatorname{Gal}(K / k)=G$, and let χ be a character of G with $\operatorname{Ker}(\chi) \neq\{1\}$. Let F be the fixed field of $\operatorname{Ker}(\chi), H:=G / \operatorname{Ker}(\chi)$ the Galois group of $F / k, \varphi: H \rightarrow \mathbb{C}, \varphi(\sigma \operatorname{Ker}(\chi)):=$ $\chi(\sigma)$ for $\sigma \in G$. We have that

$$
L(s, \chi, K / k)=L(s, \varphi, F / k),
$$

and φ is faithful.
As particular cases we obtain that the Dedekind zeta function of a number field determines its normal closure ([4], Theorem 1, p. 345) and that a Galois number field is determined by any Artin L-function corresponding to a character which contains all irreducible characters of the Galois group, the result of [3].

2. Properties of Artin L-functions

We do not give the definition of Artin L-functions, but we recall some fundamental properties of Artin L-functions needed in the sequel. Note that Artin L-functions are generalizations of Dedekind zeta functions ζ_{K} via

$$
L(s, 1, K / K)=\zeta_{K}(s)
$$

where K is a number field and 1 is the trivial character of the trivial group $\operatorname{Gal}(K / K)$. We get further possibilities to write a Dedekind zeta function as an Artin L-function by using Propositions 1 and 2.

Proposition 1. Let k be a number field, K / k a finite Galois extension with Galois group G, χ a character of G. Let N be a finite Galois extension of k which contains K, $U:=\operatorname{Gal}(N / k), V:=\operatorname{Gal}(N / K)$. We identify the groups G and U / V. Let

$$
\tilde{\chi}: U \rightarrow \mathbb{C}, \tilde{\chi}(\sigma):=\chi(\sigma V)
$$

Then we have

$$
L(s, \tilde{\chi}, N / k)=L(s, \chi, K / k) .
$$

Proof. This follows straightforward from the definition of L-functions: [1], p. 297, formula (8).

Proposition 2. Let k be a number field, K / k a finite Galois extension with Galois group G. Let $k \subseteq F \subseteq K$ be an intermediate field, $H:=\operatorname{Gal}(K / F)$, χ a character

https://daneshyari.com/en/article/4593165

Download Persian Version:

https://daneshyari.com/article/4593165

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: klueners@math.uni-paderborn.de (J. Klüners), florin.nicolae@imar.ro (F. Nicolae).

