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We describe a procedure for generating families of cyclic cubic 
fields with explicit fundamental units. This method generates 
all known families and gives new ones.
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In [5], Shanks considered what he termed the “simplest cubic fields,” defined as the 
splitting fields of the polynomials

Sn = X3 + (n + 3)X2 + nX − 1. (0.1)

In particular, he showed that if the square root of the polynomial discriminant is square-
free, then the roots of Sn form a system of fundamental units for its splitting field. The 
analysis of this family was extended by Lettl [4] and Washington [7]. Lecacheux [3], and 
later Washington [8], discovered a second one-parameter family with a similar property: 
if a certain specified chunk of the polynomial discriminant is squarefree, the roots of 
the polynomial form a system of fundamental units. Kishi [2] found a third such family. 
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In the following, we show that there are many, many more families of cubics with this 
property. The first three sections generalize the procedure of Washington [8] and follow 
the model of that paper. The fourth section is dedicated to examples: we exhibit a new 
one-parameter family and describe a method for generating arbitrarily many more.

1. The families

Let f(n) and g(n) be polynomials with integral coefficients, and assume that the 
following condition holds:

λ = f3 + g3 + 1
fg

is a polynomial with integral coefficients. (1.1)

Examples will be given in Section 4. For now we remark only that this condition implies 
that f |(g3+1) and g|(f3+1); in particular, f and g have no common factors. If Condition 
(1.1) is satisfied, the pair (f, g) determines a one-parameter family of polynomials as 
follows:

Pf,g(X) = X3 + a(n)X2 + λ(n)X − 1, where

a = 3(f2 + g2 − fg) − λ(f + g).

Note that Pf,g is symmetric in f and g, so we’ll assume that deg f ≤ deg g. If this 
inequality is strict, then deg λ < deg a. Together with the rational root theorem, this 
implies that Pf,g is irreducible for all but a small finite list of n ∈ Z. For the rest of this 
paper, we will make the standing assumptions that deg f < deg g and then fix an integer 
n for which Pf,g is irreducible. This is practical for theoretical purposes, though we note 
that the case where both f and g are constant is also of potential interest.

The discriminant of Pf,g is

DP = (f − g)2(3a + λ2)2 �= 0,

so Pf,g determines a cyclic cubic field which we denote Kf,g (or sometimes just K). Thus 
Pf,g has three real roots which we denote θ1, θ2, θ3. Since the constant term of Pf,g is a 
unit in Z, these roots are units in the ring of integers OKf,g

.

Lemma 1.1. The Z3 action of the Galois group on the roots of Pf,g is given by

G(θ) = fθ − 1
(f2 + g2 − fg)θ − g

.

Proof. Assume P (θ) = 0. Since 1, θ, and θ2 are linearly independent over Q, we have 
G(θ) �= θ. A messy but straightforward calculation shows that P (G(θ)) = 0. �
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