Families of cyclic cubic fields

Steve Balady
Department of Mathematics, University of Maryland, College Park, MD 20742, United States

A R T I C L E I N F O

Article history:

Received 16 November 2015
Received in revised form 26 March 2016
Accepted 27 March 2016
Available online 29 April 2016
Communicated by David Goss

Keywords:

Cyclic cubic fields
Fundamental units

A B S T R A C T

We describe a procedure for generating families of cyclic cubic fields with explicit fundamental units. This method generates all known families and gives new ones.
© 2016 Elsevier Inc. All rights reserved.

In [5], Shanks considered what he termed the "simplest cubic fields," defined as the splitting fields of the polynomials

$$
\begin{equation*}
S_{n}=X^{3}+(n+3) X^{2}+n X-1 \tag{0.1}
\end{equation*}
$$

In particular, he showed that if the square root of the polynomial discriminant is squarefree, then the roots of S_{n} form a system of fundamental units for its splitting field. The analysis of this family was extended by Lettl [4] and Washington [7]. Lecacheux [3], and later Washington [8], discovered a second one-parameter family with a similar property: if a certain specified chunk of the polynomial discriminant is squarefree, the roots of the polynomial form a system of fundamental units. Kishi [2] found a third such family.

[^0]http://dx.doi.org/10.1016/j.jnt.2016.03.011
0022-314X/@ 2016 Elsevier Inc. All rights reserved.

In the following, we show that there are many, many more families of cubics with this property. The first three sections generalize the procedure of Washington [8] and follow the model of that paper. The fourth section is dedicated to examples: we exhibit a new one-parameter family and describe a method for generating arbitrarily many more.

1. The families

Let $f(n)$ and $g(n)$ be polynomials with integral coefficients, and assume that the following condition holds:

$$
\begin{equation*}
\lambda=\frac{f^{3}+g^{3}+1}{f g} \text { is a polynomial with integral coefficients. } \tag{1.1}
\end{equation*}
$$

Examples will be given in Section 4. For now we remark only that this condition implies that $f \mid\left(g^{3}+1\right)$ and $g \mid\left(f^{3}+1\right)$; in particular, f and g have no common factors. If Condition (1.1) is satisfied, the pair (f, g) determines a one-parameter family of polynomials as follows:

$$
\begin{aligned}
P_{f, g}(X) & =X^{3}+a(n) X^{2}+\lambda(n) X-1, \text { where } \\
a & =3\left(f^{2}+g^{2}-f g\right)-\lambda(f+g)
\end{aligned}
$$

Note that $P_{f, g}$ is symmetric in f and g, so we'll assume that $\operatorname{deg} f \leq \operatorname{deg} g$. If this inequality is strict, then $\operatorname{deg} \lambda<\operatorname{deg} a$. Together with the rational root theorem, this implies that $P_{f, g}$ is irreducible for all but a small finite list of $n \in \mathbb{Z}$. For the rest of this paper, we will make the standing assumptions that $\operatorname{deg} f<\operatorname{deg} g$ and then fix an integer n for which $P_{f, g}$ is irreducible. This is practical for theoretical purposes, though we note that the case where both f and g are constant is also of potential interest.

The discriminant of $P_{f, g}$ is

$$
D_{P}=(f-g)^{2}\left(3 a+\lambda^{2}\right)^{2} \neq 0,
$$

so $P_{f, g}$ determines a cyclic cubic field which we denote $K_{f, g}$ (or sometimes just K). Thus $P_{f, g}$ has three real roots which we denote $\theta_{1}, \theta_{2}, \theta_{3}$. Since the constant term of $P_{f, g}$ is a unit in \mathbb{Z}, these roots are units in the ring of integers $\mathcal{O}_{K_{f, g}}$.

Lemma 1.1. The \mathbb{Z}_{3} action of the Galois group on the roots of $P_{f, g}$ is given by

$$
G(\theta)=\frac{f \theta-1}{\left(f^{2}+g^{2}-f g\right) \theta-g}
$$

Proof. Assume $P(\theta)=0$. Since $1, \theta$, and θ^{2} are linearly independent over \mathbb{Q}, we have $G(\theta) \neq \theta$. A messy but straightforward calculation shows that $P(G(\theta))=0$.

https://daneshyari.com/en/article/4593177

Download Persian Version:
https://daneshyari.com/article/4593177

Daneshyari.com

[^0]: E-mail address: sbalady@math.umd.edu.

