

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Fields generated by torsion points of elliptic curves

Andrea Bandini^{a,*}, Laura Paladino^{b,1}

^a Dipartimento di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze, 53/A, 43124 Parma (PR), Italy
^b Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo, 5, 56127 Pisa (PI), Italy

ARTICLE INFO

Article history: Received 21 May 2015 Received in revised form 3 November 2015 Accepted 18 May 2016 Available online 7 July 2016 Communicated by David Goss

MSC: 11G05 11F80

Keywords: Elliptic curves Torsion points Galois representations

ABSTRACT

Let K be a field of characteristic char(K) $\neq 2, 3$ and let \mathcal{E} be an elliptic curve defined over K. Let m be a positive integer, prime with char(K) if char(K) $\neq 0$; we denote by $\mathcal{E}[m]$ the *m*-torsion subgroup of \mathcal{E} and by $K_m := K(\mathcal{E}[m])$ the field obtained by adding to K the coordinates of the points of $\mathcal{E}[m]$. Let $P_i := (x_i, y_i)$ (i = 1, 2) be a \mathbb{Z} -basis for $\mathcal{E}[m]$; then $K_m =$ $K(x_1, y_1, x_2, y_2)$. We look for small sets of generators for K_m inside $\{x_1, y_1, x_2, y_2, \zeta_m\}$ trying to emphasize the role of ζ_m (a primitive *m*-th root of unity). In particular, we prove that $K_m = K(x_1, \zeta_m, y_2)$, for any odd $m \ge 5$. When m = p is prime and K is a number field we prove that the generating set $\{x_1, \zeta_p, y_2\}$ is often minimal, while when the classical Galois representation $\operatorname{Gal}(K_p/K) \to \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ is not surjective we are sometimes able to further reduce the set of generators. We also describe explicit generators, degree and Galois groups of the extensions K_m/K for m = 3 and m = 4.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: andrea.bandini@unipr.it (A. Bandini), paladino@mat.unical.it (L. Paladino).

¹ Partially supported by Istituto Nazionale di Alta Matematica, grant research Assegno di ricerca Ing.

G. Schirillo and partially supported by European Social Funds: FSE 2007-2013, POR Calabria 2007-2013.

1. Introduction

Let K be a field of characteristic char(K) $\neq 2, 3$ and let \mathcal{E} be an elliptic curve defined over K. Let m be a positive integer, prime with $\operatorname{char}(K)$ if $\operatorname{char}(K) \neq 0$. We denote by $\mathcal{E}[m]$ the *m*-torsion subgroup of \mathcal{E} and by $K_m := K(\mathcal{E}[m])$ the field generated by the points of $\mathcal{E}[m]$, i.e., the field obtained by adding to K the coordinates of the m-torsion points of \mathcal{E} . As usual, for any point $P \in \mathcal{E}$, we let x(P), y(P) be its coordinates and we indicate its *m*-th multiple simply by mP. We denote by $\{P_1, P_2\}$ a \mathbb{Z} -basis for $\mathcal{E}[m]$; then $K_m = K(x(P_1), x(P_2), y(P_1), y(P_2))$. To ease notation, we put $x_i := x(P_i)$ and $y_i := y(P_i)$ (i = 1, 2). By Artin's primitive element theorem the extension K_m/K is monogeneous and one can find a single generator for K_m/K by combining the above coordinates. On the other hand, by the properties of the Weil pairing e_m , we have that $e_m(P_1, P_2) \in K_m$ is a primitive *m*-th root of unity (we denote it by ζ_m). We want to emphasize the importance of ζ_m as a generator of K_m/K and look for minimal (i.e., with the smallest number of elements) sets of generators contained in $\{x_1, x_2, y_1, y_2, \zeta_m\}$. This kind of information is useful for describing the fields in terms of degrees and Galois groups, as we shall explicitly show for m = 3 and m = 4. Other applications are localglobal problems (see, e.g., [5] or the particular cases of [11] and [12]), descent problems (see, e.g., [14] and the references there or, for a particular case, [2] and [3]), Galois representations, points on modular curves (see Section 4.4) and points on Shimura curves.

It is easy to prove that $K_m = K(x_1, x_2, \zeta_m, y_1)$ (see Lemma 2.1) and we expected a close similarity between the roles of the x-coordinates and y-coordinates; this turned out to be true in relevant cases. Indeed in Section 3 (mainly by analyzing the possible elements of the Galois group $\text{Gal}(K_m/K)$) we prove that $K_m = K(x_1, \zeta_m, y_1, y_2)$ at least for odd $m \ge 5$. This leads to the following (for more precise and general statements see Theorems 2.8, 3.1 and 3.6)

Theorem 1.1. If $m \ge 3$, then $K_m = K(x_1 + x_2, x_1x_2, \zeta_m, y_1)$. Moreover if $m \ge 4$, then

$$K_m = K(x_1, \zeta_m, y_1, y_2) \Longrightarrow K_m = K(x_1, \zeta_m, y_2) .$$

In particular $K_m = K(x_1, \zeta_m, y_2)$ for any odd integer $m \ge 5$.

Note that, by Theorem 1.1, we have $K_p = K(x_1, \zeta_p, y_2)$, for any prime $p \ge 5$. The set $\{x_1, \zeta_p, y_2\}$ seems a good candidate (in general) for a minimal set of generators for K_p/K . Indeed, when K is a number field and \mathcal{E} has no complex multiplication, by Serre's open image theorem (see [15]), we expect that the natural representation

$$\rho_{\mathcal{E},p}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$$

provides an isomorphism $\operatorname{Gal}(K_p/K) \simeq \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ for almost all primes p, and there are hypotheses on x_1 , ζ_m and y_2 (see Theorem 4.3) which guarantee that

Download English Version:

https://daneshyari.com/en/article/4593190

Download Persian Version:

https://daneshyari.com/article/4593190

Daneshyari.com