ELSEVIER

An explicit bound for the number of partitions into roots

Florian Luca ${ }^{\text {a,* }}$, Dimbinaina Ralaivaosaona ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa
${ }^{\text {b }}$ Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

A R T I C L E I N F O

Article history:

Received 10 January 2016
Received in revised form 25 May 2016
Accepted 25 May 2016
Available online 9 July 2016
Communicated by David Goss

MSC:

05A17
11P82
Keywords:
Asymptotic estimate
Integer partition
Mellin transform
Saddle point method

Abstract

We use the saddle point method to prove an explicit upper bound for the number of representations of a positive integer n into the form $\left\lfloor\sqrt{a_{1}}\right\rfloor+\left\lfloor\sqrt{a_{2}}\right\rfloor+\ldots+\left\lfloor\sqrt{a_{k}}\right\rfloor$, where k and $a_{1}, a_{2}, \ldots, a_{k}$ are positive integers. We also give an asymptotic formula for this number as $n \rightarrow \infty$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The number of representations of a positive integer n of the form $\left\lfloor\sqrt{a_{1}}\right\rfloor+\left\lfloor\sqrt{a_{2}}\right\rfloor+$ $\cdots+\left\lfloor\sqrt{a_{k}}\right\rfloor$ with positive integers k and $a_{1} \leq a_{2} \leq \cdots \leq a_{k}$ was introduced by Balasubramanian and Luca in [1]. In their paper, they investigated the size of the set

[^0]$$
\mathcal{F}(x)=\{\Delta(n) \leq x\},
$$
where $\Delta(n)$ is the number of unordered factorizations of the positive integer n into factors >1. They proved that for all $x \geq 1$,
\[

$$
\begin{equation*}
|\mathcal{F}(x)| \leq \exp \left(9(\log x)^{2 / 3}\right) \tag{1}
\end{equation*}
$$

\]

Their proof of inequality (1) however depended on the following bound, which was also proved in the same paper:

$$
\begin{equation*}
q(n) \leq \exp \left(5 n^{2 / 3}\right) \tag{2}
\end{equation*}
$$

where $q(n)$ denotes the number of representations of n of the form

$$
n=\left\lfloor\sqrt{a_{1}}\right\rfloor+\left\lfloor\sqrt{a_{2}}\right\rfloor+\ldots+\left\lfloor\sqrt{a_{k}}\right\rfloor
$$

where k and $a_{1} \leq a_{2} \leq \cdots \leq a_{k}$ are positive integers.
Chen and $\mathrm{Li}[2]$ found a gap in the proof of (2). They provided an alternative proof that gives a weaker upper bound as well as a lower bound for $q(n)$. Their result is the following:

$$
\exp \left(c_{1} n^{2 / 3}\right) \leq q(n) \leq \exp \left(c_{2} n^{2 / 3}\right)
$$

where $c_{1} \approx 5.385 \times 10^{-24}$ and $c_{2} \approx 22.962$. In this paper, we use the saddle point method to obtain the following explicit upper bound on $q(n)$:

Theorem 1. For $n \geq 50$ we have

$$
\begin{equation*}
\log q(n) \leq \frac{6 \zeta(3)^{1 / 3}}{4^{2 / 3}} n^{2 / 3}\left(1+\frac{3.2}{\sqrt[3]{n+2}}\right) \tag{3}
\end{equation*}
$$

with

$$
\frac{6 \zeta(3)^{1 / 3}}{4^{2 / 3}} \approx 2.532
$$

The condition $n \geq 50$ is only a technicality that we assume to obtain a relatively small constant in the second term of the bound in (3). For $n \leq 50$, Fig. 1 shows that an even better upper bound holds (in Fig. 1 the curve represents the graph of the function $x \mapsto \frac{6 \zeta(3)^{1 / 3}}{4^{2 / 3}} x^{2 / 3}$ and the dotted line represents the graph of the sequence of general term $\log q(n))$.

Note that if $n \geq 50$ then

$$
\frac{6 \zeta(3)^{1 / 3}}{4^{2 / 3}}\left(1+\frac{3.2}{\sqrt[3]{n+2}}\right) \geq \frac{6 \zeta(3)^{1 / 3}}{4^{2 / 3}}\left(1+\frac{3.2}{\sqrt[3]{52}}\right) \approx 4.7
$$

https://daneshyari.com/en/article/4593197

Download Persian Version

https://daneshyari.com/article/4593197

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Florian.Luca@wits.ac.za (F. Luca), naina@sun.ac.za (D. Ralaivaosaona).

