Average results on the order of a modulo p

Sungjin Kim ${ }^{1}$
Department of Mathematics, University of California, Los Angeles, Math Science Building 6617A, United States

A R T I C L E I N F O

Article history:

Received 11 January 2016
Received in revised form 17 May 2016
Accepted 20 May 2016
Available online 21 July 2016
Communicated by David Goss

Keywords:

Order
Modulo p
Average
Reciprocal

A B S TRACT

Let $a>1$ be an integer. Denote by $l_{a}(p)$ the multiplicative order of a modulo primes p. We prove that if $\frac{x}{\log x \log \log x}=$ $o(y)$, then

$$
\begin{aligned}
\frac{1}{y} \sum_{a \leq y} \sum_{p \leq x} \frac{1}{l_{a}(p)}= & \log x+C \log \log x+O(1) \\
& +O\left(\frac{x}{y \log \log x}\right)
\end{aligned}
$$

which is an improvement over a theorem by Felix [Fe]. Additionally, we also prove two other related average results. © 2016 Published by Elsevier Inc.

1. Introduction

Throughout this paper, we use the letter p to denote a prime number. Let $a>1$ be an integer. If p does not divide a, we denote the multiplicative order of a modulo p by $l_{a}(p)$. If p divides a, then $l_{a}(p)$ is not defined and the term corresponding to this case will not appear in the sums throughout this paper. Artin's Conjecture on Primitive Roots

[^0](AC) states that if a is nonunit, nonsquare, then $l_{a}(p)=p-1$ for a positive proportion of primes p where the proportion is a rational multiple of the Artin's constant $A=$ $\prod_{p}\left(1-\frac{1}{p(p-1)}\right)$. Assuming the Generalized Riemann Hypothesis (GRH), Hooley [Ho] proved that $l_{a}(p)=p-1$ for positive proportion of primes $p \leq x$. It is expected that $l_{a}(p)$ is large for a majority of primes $p \leq x$. In [EM], Erdős and Murty showed that $l_{a}(p) \geq$ $p^{1 / 2+\epsilon(p)}$ for all but $o(\pi(x))$ primes $p \leq x$ where $\epsilon(p) \rightarrow 0$. With a much simpler method, they showed a weaker result namely that $l_{a}(p)>\frac{\sqrt{p}}{\log p}$ for all but $O\left(x / \log ^{3} x\right)$ primes $p \leq x$. Pappalardi $[\mathrm{P}]$ showed that there exist $\alpha, \delta>0$ such that $l_{a}(p) \geq p^{1 / 2} \exp \left(\log ^{\delta} p\right)$ for all but $O\left(x / \log ^{1+\alpha} x\right)$. Kurlberg and Pomerance [KP2] applied Fouvry [Fo] to show that there is $\gamma>0$ such that $l_{a}(p)>p^{1 / 2+\gamma}$ for a positive proportion of primes $p \leq x$.

Therefore, it is natural to expect that the average reciprocal of $l_{a}(p)$ is quite small. Murty and Srinivasan $[\mathrm{MS}]$ showed that $\sum_{p<x} \frac{1}{l_{a}(p)}=O(\sqrt{x})$ and that $\sum_{p<x} \frac{1}{l_{a}(p)}=$ $O\left(x^{1 / 4}\right)$ implies AC for a. Pappalardi [P] proved that for some positive constant γ,

$$
\sum_{p<x} \frac{1}{l_{a}(p)}=O\left(\frac{\sqrt{x}}{\log ^{1+\gamma} x}\right)
$$

For fixed a, it seems that it is very difficult to obtain $O\left(x^{c}\right)$ for some $c<1 / 2$ with current knowledge. However, we expect that averaging over a would give some information. The following result by Felix $[\mathrm{Fe}]$ supports that $l_{a}(p)$ is mostly large:

If $\frac{x}{\log x}=o(y)$, then

$$
\frac{1}{y} \sum_{a \leq y} \sum_{p \leq x} \frac{1}{l_{a}(p)}=\log x+O(\log \log x)+O\left(\frac{x}{y}\right)
$$

Felix remarked that the first error term $O(\log \log x)$ is in fact of the shape $C \log \log x+$ $O(1)$ by applying Fiorilli's method [Fi], but did not explicitly find C. We find the C in Theorem 1.1. This detailed estimate takes effect when $\frac{x}{(\log \log x)^{2}}=o(y)$. We apply a deep result on exponential sums by Bourgain [B] to obtain Corollary 2.2 which will be the key for all average results in this paper.

Theorem 1.1. If $\frac{x}{\log x \log \log x}=o(y)$, then

$$
\frac{1}{y} \sum_{a \leq y} \sum_{p \leq x} \frac{1}{l_{a}(p)}=\log x+C \log \log x+O(1)+O\left(\frac{x}{y \log \log x}\right)
$$

where

$$
\begin{aligned}
C= & 2 \gamma-2 \sum_{p} \frac{\log p}{p^{2}-p+1} \\
& +\frac{\zeta(2) \zeta(3)}{\zeta(6)} \sum_{k=1}^{\infty} \frac{\mu(k)}{k^{2}}\left(-2 \sum_{p \mid k} \frac{(p-1) p \log p}{p^{2}-p+1}+\log k\right) \prod_{p \mid k}\left(1+\frac{p-1}{p^{2}-p+1}\right) .
\end{aligned}
$$

https://daneshyari.com/en/article/4593203

Download Persian Version:
https://daneshyari.com/article/4593203

Daneshyari.com

[^0]: E-mail address: 707107@gmail.com.
 ${ }^{1}$ Present addresses: Concordia University Irvine, 1530 Concordia, Irvine, CA 92612; Santa Monica College, 1900 Pico Blvd, Santa Monica, CA 90405.

