

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

A family of measures on symmetric groups and the field with one element

Jeffrey C. Lagarias¹

Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, United States

ARTICLE INFO

Article history: Received 9 July 2015 Accepted 18 September 2015 Available online 12 November 2015 Communicated by Jerome Hoffman, Robert Perlis, Ling Long, Karl Mahlburg, Jorge Morales, Holly Swisher

MSC: primary 11R09 secondary 11R32, 12E20, 12E25

Keywords: Finite field Polynomial factorization Symmetric group

ABSTRACT

For each $n \geq 1$ this paper considers a one-parameter family of complex-valued measures on the symmetric group S_n , depending on a complex parameter z. For parameter values $z = q = p^f$ this measure describes splitting probabilities of monic degree n polynomials over $\mathbb{F}_q[X]$, conditioned on being square-free. It studies these measures in the case z = 1, and shows that they have an interesting internal structure having a representation theoretic interpretation. These measures may encode data relevant to the hypothetical "field with one element \mathbb{F}_1 ". It additionally studies the case z = -1, which also has a representation theoretic interpretation.

@ 2015 Published by Elsevier Inc.

1. Introduction

This paper considers a one-parameter family of complex-valued measures on the symmetric group S_n , called *z*-splitting measures, introduced by the author and B.L. Weiss in [15]. The parameter z may take complex values. These measures were constructed to interpolate at parameter values $z = q = p^f$, a prime power, probability

E-mail address: lagarias@umich.edu.

¹ The author's work was partially supported by NSF grant DMS-1401224.

measures that give the probabilities of given factorization type of monic degree n polynomials over finite fields \mathbb{F}_q , conditioned to have a square-free factorization. In [15] these measures at z = p arose as limiting distributions on how the prime ideal (p)in \mathbb{Z} splits in the number field generated by a root of a random degree n polynomial $f(X) = X^n + a_{n-1}X^{n-1} + \dots + a_0 \in \mathbb{Z}[X]$ with coefficients drawn from a box $|a_i| \leq B$, as $B \to \infty$, after conditioning on the polynomial discriminant D_f being relatively prime to p. With limiting probability 1 as $B \to \infty$ such a polynomial f(X) is irreducible and has splitting field having Galois group S_n , in which case adjoining a single root of it yields an S_n -extension, meaning a non-Galois degree n extension of \mathbb{Q} whose Galois closure has Galois group S_n . The resulting splitting distributions were compared to those in a conjecture of Bhargava 1 for the distribution of splitting types of a fixed prime ideal (p) in those S_n -extensions k of \mathbb{Q} having field discriminant $|D_k|$ at most D, in the limit $D \to \infty$. The Bhargava distribution matches the $z \to \infty$ limit of the z-splitting measures, which is the uniform distribution on S_n . The z-splitting measures for z = pare also relevant to the distribution to splitting types of monic polynomials with p-adic integer coefficients studied by Weiss [35].

To define the z-splitting measures, we first specify them to be constant on conjugacy classes C_{λ} of S_n , which we label by partitions λ specifying the (common) cycle structure of all elements $g \in C_{\lambda}$. For each $m \geq 1$ we define the *m*-th necklace polynomial $M_m(X)$ by

$$M_m(X) := \frac{1}{m} \sum_{d|m} \mu(d) X^{m/d},$$

where $\mu(d)$ is the Möbius function. We next introduce the cycle polynomial $N_{\lambda}(X)$ attached to a partition λ , by

$$N_{\lambda}(X) := \prod_{j=1}^{n} \binom{M_{j}(z)}{m_{j}(\lambda)},$$

in which $m_j = m_j(\lambda)$ counts the number of cycles in $g \in S_n$ of length j, and for a complex number z we interpret $\binom{z}{k} := \frac{(z)_k}{k!} = \frac{z(z-1)\cdots(z-k+1)}{k!}$. The z-splitting measure $\nu_{n,z}^*$ is then defined on conjugacy classes C_{λ} of S_n by

$$\nu_{n,z}^*(C_\lambda) := \frac{1}{z^{n-1}(z-1)} N_\lambda(X).$$
(1.1)

The value of the measure on a single element $g \in S_n$ with $g \in C_\lambda$ is $\nu_{n,z}^*(g) := \frac{1}{|C_\lambda|}\nu_{n,z}^*(C_\lambda)$. In [15] it was shown that for all integers $k \neq 0, 1$ the measures $\nu_{n,k}^*$ are nonnegative, so are probability measures. In addition a limit measure as $z \to \infty$ exists and is the uniform measure on S_n .

This paper studies these measures at the parameter value z = 1, which is the sole remaining integer value where the z-splitting measure is well-defined, cf. Lemma 2.5. Download English Version:

https://daneshyari.com/en/article/4593226

Download Persian Version:

https://daneshyari.com/article/4593226

Daneshyari.com