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We study the Eisenstein ideal of Drinfeld modular curves of 
small levels, and the relation of the Eisenstein ideal to the 
cuspidal divisor group and the component groups of Jacobians 
of Drinfeld modular curves. We prove that the characteristic 
of the function field is an Eisenstein prime number when the 
level is an arbitrary non-square-free ideal of Fq[T ] not equal 
to a square of a prime.
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1. Introduction

The Eisenstein ideal for modular curves over Q was introduced by Mazur in his seminal 
paper [19], and since then the Eisenstein ideal has become an indispensable tool in various 
problems related to modular curves, modular Jacobians, modular Galois representations, 
etc. The problem to develop the theory of Eisenstein ideals for Drinfeld modular curves 
was suggested by Mazur, already in the introduction of [19]. The first attempt to develop 
this theory was made by Tamagawa [32], but more comprehensive results were obtained 
by Pál [21]. Both [32] and [21] assume that the level is prime. In [27], in connection 
with the problem of Jacquet–Langlands isogenies over function fields, we examined the 
Eisenstein ideal on Drinfeld modular curves whose level is a product of two distinct 
primes. We discovered that some of the properties of the Eisenstein ideal in that case are 
quite different from its prime level counterpart. In this paper we continue our study of the 
Eisenstein ideal for non-prime levels, and its relation to the cuspidal divisor group and the 
component groups of Jacobians of Drinfeld modular curves. Our goal here is to compute 
everything explicitly when the level is small, and from this make some predictions about 
the behaviour of the Eisenstein ideal in general.

Let Fq be a finite field with q elements, where q is a power of a prime number p. Let 
A = Fq[T ] be the ring of polynomials in indeterminate T with coefficients in Fq, and 
F = Fq(T ) be the rational function field. The degree map deg : F → Z ∪ {−∞}, which 
associates to a non-zero polynomial its degree in T and deg(0) = −∞, defines a norm on 
F by |a| := qdeg(a). The corresponding place of F is usually called the place at infinity, 
and is denoted by ∞; it plays a role similar to the archimedean place of Q. We also define 
a norm and degree on the ideals of A by |n| := #(A/n) and deg(n) := logq |n|. Let F∞
denote the completion of F at ∞, and C∞ denote the completion of an algebraic closure 
of F∞. Let Ω := C∞ − F∞ be the Drinfeld half-plane.

Let n � A be a non-zero ideal. The level-n Hecke congruence subgroup of GL2(A) is

Γ0(n) :=
{(

a b

c d

)
∈ GL2(A)

∣∣∣∣ c ≡ 0 mod n

}
.

Let T(n) be the Z-algebra generated by the Hecke operators Tm, m � A, acting on the 
group H0(n, Z) of Z-valued Γ0(n)-invariant cuspidal harmonic cochains on the Bruhat–
Tits tree T of PGL2(F∞); see Section 2 for the definitions. The Eisenstein ideal E(n)
of T(n) is the ideal generated by the elements

{
Tp − |p| − 1

∣∣ p is prime, p � n
}
.

(For some alternative ways of defining this ideal see Section 5.6.) The quotient ring 
T(n)/E(n) is finite (Lemma 2.9), and constitutes the main object of study of this paper. 
In some sense, T(n)/E(n) encodes congruences between cuspidal harmonic cochains and 
Eisenstein series.
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