Some identities involving certain Hardy sum and Kloosterman sum ${ }^{\star \pi}$

Wen Peng, Tianping Zhang*
School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, PR China

A R T I C L E I N F O

Article history:

Received 1 October 2015
Received in revised form 21 January 2016
Accepted 21 January 2016
Available online 15 March 2016
Communicated by David Goss

MSC:

11F20
11L05
Keywords:
Hardy sum
Kloosterman sum
Gauss sum
Hybrid mean value

A B S T R A C T

Text. By using the properties of Gauss sums and the mean value theorem of the Dirichlet L-function, a hybrid mean value problem involving certain Hardy sum and Kloosterman sum is studied. Two exact computational formulae are given, through which the cancellation phenomenon is revealed.

Video. For a video summary of this paper, please visit https://youtu.be/d-X81xErU7Q.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For any positive integer k and an arbitrary integer h, the classical Dedekind sum $S(h, k)$ is defined by

[^0]$$
S(h, k)=\sum_{a=1}^{k}\left(\left(\frac{a}{k}\right)\right)\left(\left(\frac{a h}{k}\right)\right)
$$
where
\[

((x))= $$
\begin{cases}x-[x]-\frac{1}{2}, & \text { if } x \text { is not an integer } \\ 0, & \text { if } x \text { is an integer }\end{cases}
$$
\]

The sum $S(h, k)$ plays an important role in the transformation theory of the Dedekind η function. The various properties of $S(h, k)$ were investigated by many authors. For example, L. Carlitz [2] obtained a reciprocity theorem of $S(h, k)$. J.B. Conrey et al. [3] studied the mean value distribution of $S(h, k)$, and proved an interesting asymptotic formula for $\sum_{h=1}^{k}|S(h, k)|^{2 m}$, where \sum^{\prime} denotes the summation over all $1 \leq h \leq k$ such that $(h, k)=1$.
G.H. Hardy [4] introduced another sum analogous to Dedekind sum as

$$
S_{5}(h, k)=\sum_{j=1}^{k}(-1)^{j+\left[\frac{h j}{k}\right]}\left(\left(\frac{j}{k}\right)\right)
$$

where h and k are integers with $k>0$, which was one of the well-known so called Hardy sums or Berndt's arithmetic sums. Actually G.H. Hardy used $S_{5}(h, k)$ to arouse the theory of $r_{s}(n)$, the number of representations of n as the sum of s squares. He [4] obtained formulae $r_{s}(n)$, for $5 \leq s \leq 8$ and asymptotic formulae for $s>8$. And R. Sitaramachandrarao [7] gave the relations between Hardy sums involving $S_{5}(h, k)$ and classical Dedekind sum $S(h, q)$ as the following:

Proposition 1.1. Let $(h, k)=1$. If $h+k$ is even, then we have

$$
S_{5}(h, k)=-10 S(h, k)+2 S(2 h, k)+4 S(h, 2 k) .
$$

B.C. Berndt [1] and R. Sitaramachandrarao [7] also found the reciprocity theorem of $S_{5}(h, k)$ as:

Proposition 1.2. Let h and k be coprime positive integers. If h and k are odd, then we have

$$
S_{5}(h, k)+S_{5}(k, h)=\frac{1}{2}-\frac{1}{2 h k} .
$$

Y. Simsek [5] established some relations among theta-functions, Hardy sums and Lambert series. Moreover, for each pair (h, k) of relatively prime integers with positive k, he [6] defined a new sum $Y(h, k)$ as

https://daneshyari.com/en/article/4593252

Download Persian Version:
https://daneshyari.com/article/4593252

Daneshyari.com

[^0]: This work is supported by the National Natural Science Foundation of China (No. 11201275), and the Fundamental Research Funds for the Central Universities (No. GK201503014).

 * Corresponding author.

 E-mail addresses: wenpeng2013@snnu.edu.cn (W. Peng), tpzhang@snnu.edu.cn (T. Zhang).

