

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Computation of integral bases $\stackrel{\bigstar}{\Rightarrow}$

Jens-Dietrich Bauch

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ARTICLE INFO

Article history: Received 31 July 2015 Received in revised form 3 January 2016 Accepted 11 January 2016 Available online 3 March 2016 Communicated by M. Pohst

Keywords: p-Integral bases Maximal order Montes algorithm Dedekind domain

ABSTRACT

Let A be a Dedekind domain, K the fraction field of A, and $f \in A[x]$ a monic irreducible separable polynomial. For a given non-zero prime ideal \mathfrak{p} of A we present in this paper a new characterization of a \mathfrak{p} -integral basis of the extension of K determined by f. This characterization yields in an algorithm to compute \mathfrak{p} -integral bases, which is based on the use of simple multipliers that can be constructed with the data that occurs along the flow of the Montes Algorithm. Our construction of a \mathfrak{p} -integral basis is significantly faster than the similar approach from [8] and provides in many cases a priori a triangular basis.

@ 2016 Published by Elsevier Inc.

0. Introduction

Let A be a Dedekind domain, K the fraction field of A, and \mathfrak{p} a non-zero prime ideal of A. By $A_{\mathfrak{p}}$ we denote the localization of A at \mathfrak{p} . Let $\pi \in \mathfrak{p}$ be a prime element of \mathfrak{p} .

Denote by $\theta \in K^{\text{sep}}$ a root of a monic irreducible separable polynomial $f \in A[x]$ of degree n and let $L = K(\theta)$ be the finite separable extension of K generated by θ . We

 $^{^{*}}$ This research was supported by MTM2012-34611 and MTM2013-40680 from the Spanish MEC and by the Netherlands Organisation for Scientific Research (NWO) under grant 613.001.011.

E-mail address: j.bauch@tue.nl.

denote by \mathcal{O} the integral closure of A in L and by $\mathcal{O}_{\mathfrak{p}}$ the integral closure of $A_{\mathfrak{p}}$ in L. A \mathfrak{p} -integral basis of \mathcal{O} is an $A_{\mathfrak{p}}$ -basis of $\mathcal{O}_{\mathfrak{p}}$ (cf. Definition 3.1).

If A is a PID, then \mathcal{O} is a free A-module of rank n, and its easy to construct an A-basis of \mathcal{O} from the different p-integral bases, for prime ideals \mathfrak{p} of A that divide the discriminant of f.

In this work we follow the approach from [8] to apply the notion of reduceness in the context of integral bases. By weakening the concept of reduceness we deduce a new characterization of \mathfrak{p} -integral bases (Theorem 3.2). This yields in an algorithm to compute a \mathfrak{p} -integral basis: We construct for any prime ideal \mathfrak{P} of \mathcal{O} lying over \mathfrak{p} a local set $\mathcal{B}^*_{\mathfrak{P}} \subset \mathcal{O}$ and a multiplier $z_{\mathfrak{P}} \in L$ such that $\cup_{\mathfrak{P}|\mathfrak{p}} z_{\mathfrak{P}} \mathcal{B}^*_{\mathfrak{P}}$ is a \mathfrak{p} -integral basis of \mathcal{O} , where $z_{\mathfrak{P}} \mathcal{B}^*_{\mathfrak{P}}$ denotes the set we obtain by multiplying all elements in $\mathcal{B}^*_{\mathfrak{P}}$ by $z_{\mathfrak{P}}$. The construction of these local sets and the multipliers is based on the *Okutsu-Montes (OM) representations* of the prime ideals of \mathcal{O} lying over \mathfrak{p} , provided by the Montes algorithm. In comparison with the existing methods from [7] and [8] our construction of the multipliers is much simpler (and faster) and results in many cases directly in a triangular \mathfrak{p} -integral basis \mathcal{B} of \mathcal{O} , that is, $\mathcal{B} = \{b_0, \ldots, b_{n-1}\}$, where $b_i = g_i(\theta)/\pi^{m_i}$ with $g_i \in A[x]$, monic of degree i and $m_i \in \mathbb{Z}$. Hence the transformation into a basis in HNF becomes especially efficient.

The article is divided into the following sections. In section 1 we summarize the Montes algorithm briefly and introduce the basic ingredients of our algorithm for the computation of a p-integral basis. That is, we define types, Okutsu invariants, and a local set $\mathcal{B}_{\mathfrak{P}} \subset A[x]$ (cf. Definition 1.7) for a prime ideal \mathfrak{P} of \mathcal{O} lying over \mathfrak{p} . In section 2 we introduce the notion of (semi-)reduced bases, which provides a new characterization of p-integral bases (Theorem 3.2) and a new method of constructing multipliers $z_{\mathfrak{P}}$, for any prime ideal \mathfrak{P} of \mathcal{O} over \mathfrak{p} , such that the union of the sets $\{z_{\mathfrak{P}} \cdot b(\theta)/\pi^{m_b} \mid b \in \mathcal{B}_{\mathfrak{P}}\}$, for $\mathfrak{P}|\mathfrak{p}$ and certain integers m_b , is a p-integral basis. If we assume that A/\mathfrak{p} is finite with q elements and \mathcal{R} is a set of representatives of A/\mathfrak{p} then we will see that the complexity of the method is dominated by $O(n^{1+\epsilon}\delta \log q + n^{1+\epsilon}\delta^{2+\epsilon} + n^{2+\epsilon}\delta^{1+\epsilon})$ operations in \mathcal{R} (Lemma 3.10), where $\delta := v_{\mathfrak{p}}(\operatorname{Disc} f)$. In section 4 we consider the practical performance of our method in the context of algebraic function fields. We have implemented the method for the case A = k[t], where k is a finite field or $k = \mathbb{Q}$. The package can be downloaded from https://github.com/JensBauch/Integral_Basis.

1. Montes algorithm

We consider the monic separable and irreducible polynomial $f \in A[x]$. For a non-zero prime ideal \mathfrak{p} of A we denote the induced discrete valuation by $v_{\mathfrak{p}} : A \to \mathbb{Z} \cup \{\infty\}$ and the completion of K at \mathfrak{p} by $K_{\mathfrak{p}}$. The valuation $v_{\mathfrak{p}}$ extends in an obvious way to $K_{\mathfrak{p}}$. Denote by $\hat{A}_{\mathfrak{p}}$ the valuation ring of $v_{\mathfrak{p}}$ and by $\mathfrak{m}_{\mathfrak{p}} = \mathfrak{p}\hat{A}_{\mathfrak{p}}$ its maximal ideal.

By the classical theorem of Hensel [11] the prime ideals of \mathcal{O} lying over \mathfrak{p} are in one-to-one correspondence with the monic irreducible factors of f in $\hat{A}_{\mathfrak{p}}[x]$.

Download English Version:

https://daneshyari.com/en/article/4593254

Download Persian Version:

https://daneshyari.com/article/4593254

Daneshyari.com