Computation of integral bases ${ }^{\text {st }}$

Jens-Dietrich Bauch
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

A R T I C L E I N F O

Article history:

Received 31 July 2015
Received in revised form 3 January 2016
Accepted 11 January 2016
Available online 3 March 2016
Communicated by M. Pohst

Keywords:

p-Integral bases
Maximal order
Montes algorithm
Dedekind domain

Abstract

Let A be a Dedekind domain, K the fraction field of A, and $f \in A[x]$ a monic irreducible separable polynomial. For a given non-zero prime ideal \mathfrak{p} of A we present in this paper a new characterization of a \mathfrak{p}-integral basis of the extension of K determined by f. This characterization yields in an algorithm to compute \mathfrak{p}-integral bases, which is based on the use of simple multipliers that can be constructed with the data that occurs along the flow of the Montes Algorithm. Our construction of a \mathfrak{p}-integral basis is significantly faster than the similar approach from [8] and provides in many cases a priori a triangular basis.

© 2016 Published by Elsevier Inc.

0. Introduction

Let A be a Dedekind domain, K the fraction field of A, and \mathfrak{p} a non-zero prime ideal of A. By $A_{\mathfrak{p}}$ we denote the localization of A at \mathfrak{p}. Let $\pi \in \mathfrak{p}$ be a prime element of \mathfrak{p}.

Denote by $\theta \in K^{\text {sep }}$ a root of a monic irreducible separable polynomial $f \in A[x]$ of degree n and let $L=K(\theta)$ be the finite separable extension of K generated by θ. We

[^0]denote by \mathcal{O} the integral closure of A in L and by $\mathcal{O}_{\mathfrak{p}}$ the integral closure of $A_{\mathfrak{p}}$ in L. A \mathfrak{p}-integral basis of \mathcal{O} is an $A_{\mathfrak{p}}$-basis of $\mathcal{O}_{\mathfrak{p}}$ (cf. Definition 3.1).

If A is a PID, then \mathcal{O} is a free A-module of rank n, and its easy to construct an A-basis of \mathcal{O} from the different \mathfrak{p}-integral bases, for prime ideals \mathfrak{p} of A that divide the discriminant of f.

In this work we follow the approach from [8] to apply the notion of reduceness in the context of integral bases. By weakening the concept of reduceness we deduce a new characterization of \mathfrak{p}-integral bases (Theorem 3.2). This yields in an algorithm to compute a \mathfrak{p}-integral basis: We construct for any prime ideal \mathfrak{P} of \mathcal{O} lying over \mathfrak{p} a local set $\mathcal{B}_{\mathfrak{P}}^{*} \subset \mathcal{O}$ and a multiplier $z_{\mathfrak{P}} \in L$ such that $\cup_{\mathfrak{P} \mid \mathfrak{p}} z_{\mathfrak{P}} \mathcal{B}_{\mathfrak{P}}^{*}$ is a \mathfrak{p}-integral basis of \mathcal{O}, where $z_{\mathfrak{P}} \mathcal{B}_{\mathfrak{W}}^{*}$ denotes the set we obtain by multiplying all elements in $\mathcal{B}_{\mathfrak{P}}^{*}$ by $z_{\mathfrak{P}}$. The construction of these local sets and the multipliers is based on the Okutsu-Montes (OM) representations of the prime ideals of \mathcal{O} lying over \mathfrak{p}, provided by the Montes algorithm. In comparison with the existing methods from [7] and [8] our construction of the multipliers is much simpler (and faster) and results in many cases directly in a triangular \mathfrak{p}-integral basis \mathcal{B} of \mathcal{O}, that is, $\mathcal{B}=\left\{b_{0}, \ldots, b_{n-1}\right\}$, where $b_{i}=g_{i}(\theta) / \pi^{m_{i}}$ with $g_{i} \in A[x]$, monic of degree i and $m_{i} \in \mathbb{Z}$. Hence the transformation into a basis in HNF becomes especially efficient.

The article is divided into the following sections. In section 1 we summarize the Montes algorithm briefly and introduce the basic ingredients of our algorithm for the computation of a \mathfrak{p}-integral basis. That is, we define types, Okutsu invariants, and a local set $\mathcal{B}_{\mathfrak{P}} \subset A[x]$ (cf. Definition 1.7) for a prime ideal \mathfrak{P} of \mathcal{O} lying over \mathfrak{p}. In section 2 we introduce the notion of (semi-)reduced bases, which provides a new characterization of \mathfrak{p}-integral bases (Theorem 3.2) and a new method of constructing multipliers $z_{\mathfrak{F}}$, for any prime ideal \mathfrak{P} of \mathcal{O} over \mathfrak{p}, such that the union of the sets $\left\{z_{\mathfrak{F}} \cdot b(\theta) / \pi^{m_{b}} \mid b \in \mathcal{B}_{\mathfrak{P}}\right\}$, for $\mathfrak{P} \mid \mathfrak{p}$ and certain integers m_{b}, is a \mathfrak{p}-integral basis. If we assume that A / \mathfrak{p} is finite with q elements and \mathcal{R} is a set of representatives of A / \mathfrak{p} then we will see that the complexity of the method is dominated by $O\left(n^{1+\epsilon} \delta \log q+n^{1+\epsilon} \delta^{2+\epsilon}+n^{2+\epsilon} \delta^{1+\epsilon}\right)$ operations in \mathcal{R} (Lemma 3.10), where $\delta:=v_{\mathfrak{p}}(\operatorname{Disc} f)$. In section 4 we consider the practical performance of our method in the context of algebraic function fields. We have implemented the method for the case $A=k[t]$, where k is a finite field or $k=\mathbb{Q}$. The package can be downloaded from https://github.com/JensBauch/Integral_Basis.

1. Montes algorithm

We consider the monic separable and irreducible polynomial $f \in A[x]$. For a non-zero prime ideal \mathfrak{p} of A we denote the induced discrete valuation by $v_{\mathfrak{p}}: A \rightarrow \mathbb{Z} \cup\{\infty\}$ and the completion of K at \mathfrak{p} by $K_{\mathfrak{p}}$. The valuation $v_{\mathfrak{p}}$ extends in an obvious way to $K_{\mathfrak{p}}$. Denote by $\hat{A}_{\mathfrak{p}}$ the valuation ring of $v_{\mathfrak{p}}$ and by $\mathfrak{m}_{\mathfrak{p}}=\mathfrak{p} \hat{A}_{\mathfrak{p}}$ its maximal ideal.

By the classical theorem of Hensel [11] the prime ideals of \mathcal{O} lying over \mathfrak{p} are in one-to-one correspondence with the monic irreducible factors of f in $\hat{A}_{\mathfrak{p}}[x]$.

https://daneshyari.com/en/article/4593254

Download Persian Version:
https://daneshyari.com/article/4593254

Daneshyari.com

[^0]: th This research was supported by MTM2012-34611 and MTM2013-40680 from the Spanish MEC and by the Netherlands Organisation for Scientific Research (NWO) under grant 613.001.011.

 E-mail address: j.bauch@tue.nl.

