Modular forms of arbitrary even weight with no exceptional primes

Jeffrey Hatley

> A R T I C L E I N F O

Article history:

Received 12 January 2016
Received in revised form 26 January 2016
Accepted 5 February 2016
Available online 1 April 2016
Communicated by K.A. Ribet

Keywords:

Modular forms
Galois representations

Abstract

A result of Dieulefait-Wiese proves the existence of modular eigenforms of weight 2 for which the image of every associated residual Galois representation is as large as possible. We generalize this result to eigenforms of general even weight $k \geq 2$. © 2016 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this note is to provide a modest generalization of a theorem of Dieulefait-Wiese. Before stating the result, we briefly recall some terminology and notation.

Let $f=\sum a_{n} q^{n} \in S_{k}\left(\Gamma_{0}(N)\right)$ be a normalized cuspidal modular eigenform (henceforth simply called an "eigenform") of weight $k \geq 2$ and level $\Gamma_{0}(N)$ for some integer $N \geq 1$. Let $G_{\mathbf{Q}}$ denote the absolute Galois $\operatorname{group} \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$. The Fourier coefficients $\left\{a_{i}\right\}$ generate a number field K_{f}. Let \mathcal{O}_{f} be the ring of integers of K_{f}, let λ be a maximal ideal in \mathcal{O}_{f} with residue characteristic ℓ, and write \mathbf{F}_{λ} for the extension of \mathbf{F}_{ℓ} generated by $\left\{a_{i} \bmod \lambda\right\}$, the residues of the Hecke eigenvalues. By work of Deligne, there is a Galois representation

[^0]$$
\rho_{f, \lambda}: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{f, \lambda}\right)
$$
as well as an associated semisimple residual representation
$$
\bar{\rho}_{f, \lambda}: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{\lambda}\right)
$$

These representations are unramified outside the primes dividing $N \ell \infty$, and $\bar{\rho}_{f, \lambda}$ is absolutely irreducible for almost all primes λ. Upon composing $\bar{\rho}_{f, \lambda}$ with the natural projection $\mathrm{GL}_{2}\left(\mathbf{F}_{\lambda}\right) \rightarrow \mathrm{PGL}_{2}\left(\mathbf{F}_{\lambda}\right)$, we obtain the projective representation

$$
\bar{\rho}_{f, \lambda}^{\mathrm{proj}}: G_{\mathbf{Q}} \rightarrow \mathrm{PGL}_{2}\left(\mathbf{F}_{\lambda}\right)
$$

By a result of Ribet [11, Theorem 3.1], if f does not have complex multiplication (CM), then the image of $\bar{\rho}_{f, \lambda}^{\text {proj }}$ is "as large as possible" for all but finitely many primes λ. More precisely, for almost all λ, the image of $\bar{\rho}_{f, \lambda}^{\text {proj }}$ is either $\operatorname{PGL}_{2}\left(\mathbf{F}_{\lambda}\right)$ or $\operatorname{PSL}_{2}\left(\mathbf{F}_{\lambda}\right)$ (see also [4, Corollary 3.2]). In Section 1.1 we briefly discuss the history of such results.

Definition 1. A maximal ideal λ of \mathcal{O}_{f} is called exceptional if the image of $\bar{\rho}_{f, \lambda}^{\text {proj }}$ is not $\mathrm{PGL}_{2}\left(\mathbf{F}_{\lambda}\right)$ or $\mathrm{PSL}_{2}\left(\mathbf{F}_{\lambda}\right)$. We may also say that $\bar{\rho}_{f, \lambda}^{\text {proj }}$ is exceptional.

Remark 1. Recall that by Dickson's classification, if $\bar{\rho}_{f, \lambda}$ is both irreducible and exceptional, then the image must be either dihedral or isomorphic to A_{4}, S_{4}, or A_{5}.

Thus Ribet's theorem states that if f does not have CM, then it has only finitely many exceptional primes. The following theorem was proved by Dieulefait-Wiese.

Theorem 1. (See [4, Theorem 6.2].) There exist eigenforms $\left(f_{n}\right)_{n \in \mathbf{N}}$ of weight 2 such that
(1) for all n the eigenform f_{n} has no exceptional primes, and
(2) for a fixed prime ℓ, the size of the image of $\bar{\rho}_{f_{n}, \lambda_{n}}$ for $\lambda_{n} \triangleleft \mathcal{O}_{f_{n}}$ is unbounded for running n.

Remark 2. The eigenforms f_{n} in Theorem 1 have some additional technical properties. First, they do not have CM, which is a necessary condition. Second, they have no nontrivial inner twists; this is important for their application to the inverse Galois problem in [4]. While the modular forms which we construct in Theorem 2 also enjoy these properties, we will not mention them for the sake of brevity and ease of exposition.

In this paper, we modify the arguments of [4] to obtain a version of Theorem 1 for eigenforms of general even weight $k \geq 2$. The main result of this paper is the following.

Theorem 2. Let $k \geq 2$ be an even integer. There exist eigenforms $\left(f_{n}\right)_{n \in \mathbf{N}}$ of weight k such that

https://daneshyari.com/en/article/4593270

Download Persian Version:
https://daneshyari.com/article/4593270

Daneshyari.com

[^0]: E-mail address: hatleyj@union.edu.

