



Contents lists available at ScienceDirect

### Journal of Number Theory

www.elsevier.com/locate/jnt

# Modular forms of arbitrary even weight with no exceptional primes



Jeffrey Hatley

#### ARTICLE INFO

Article history: Received 12 January 2016 Received in revised form 26 January 2016 Accepted 5 February 2016 Available online 1 April 2016 Communicated by K.A. Ribet

Keywords: Modular forms Galois representations

#### 1. Introduction

The purpose of this note is to provide a modest generalization of a theorem of Dieulefait–Wiese. Before stating the result, we briefly recall some terminology and notation.

Let  $f = \sum a_n q^n \in S_k(\Gamma_0(N))$  be a normalized cuspidal modular eigenform (henceforth simply called an "eigenform") of weight  $k \geq 2$  and level  $\Gamma_0(N)$  for some integer  $N \geq 1$ . Let  $G_{\mathbf{Q}}$  denote the absolute Galois group  $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ . The Fourier coefficients  $\{a_i\}$  generate a number field  $K_f$ . Let  $\mathcal{O}_f$  be the ring of integers of  $K_f$ , let  $\lambda$  be a maximal ideal in  $\mathcal{O}_f$  with residue characteristic  $\ell$ , and write  $\mathbf{F}_{\lambda}$  for the extension of  $\mathbf{F}_{\ell}$  generated by  $\{a_i \mod \lambda\}$ , the residues of the Hecke eigenvalues. By work of Deligne, there is a Galois representation

#### ABSTRACT

A result of Dieulefait–Wiese proves the existence of modular eigenforms of weight 2 for which the image of every associated residual Galois representation is as large as possible. We generalize this result to eigenforms of general even weight  $k \geq 2$ . © 2016 Elsevier Inc. All rights reserved.

E-mail address: hatleyj@union.edu.

 $<sup>\</sup>label{eq:http://dx.doi.org/10.1016/j.jnt.2016.02.026} 0022-314X/ © 2016 Elsevier Inc. All rights reserved.$ 

$$\rho_{f,\lambda}: G_{\mathbf{Q}} \to \mathrm{GL}_2(\mathcal{O}_{f,\lambda})$$

as well as an associated semisimple residual representation

$$\bar{\rho}_{f,\lambda}: G_{\mathbf{Q}} \to \mathrm{GL}_2(\mathbf{F}_{\lambda}).$$

These representations are unramified outside the primes dividing  $N\ell\infty$ , and  $\bar{\rho}_{f,\lambda}$  is absolutely irreducible for almost all primes  $\lambda$ . Upon composing  $\bar{\rho}_{f,\lambda}$  with the natural projection  $\operatorname{GL}_2(\mathbf{F}_{\lambda}) \to \operatorname{PGL}_2(\mathbf{F}_{\lambda})$ , we obtain the projective representation

$$\bar{\rho}_{f,\lambda}^{\mathrm{proj}}: G_{\mathbf{Q}} \to \mathrm{PGL}_2(\mathbf{F}_{\lambda}).$$

By a result of Ribet [11, Theorem 3.1], if f does not have complex multiplication (CM), then the image of  $\bar{\rho}_{f,\lambda}^{\text{proj}}$  is "as large as possible" for all but finitely many primes  $\lambda$ . More precisely, for almost all  $\lambda$ , the image of  $\bar{\rho}_{f,\lambda}^{\text{proj}}$  is either  $\text{PGL}_2(\mathbf{F}_{\lambda})$  or  $\text{PSL}_2(\mathbf{F}_{\lambda})$  (see also [4, Corollary 3.2]). In Section 1.1 we briefly discuss the history of such results.

**Definition 1.** A maximal ideal  $\lambda$  of  $\mathcal{O}_f$  is called *exceptional* if the image of  $\bar{\rho}_{f,\lambda}^{\text{proj}}$  is not  $\text{PGL}_2(\mathbf{F}_{\lambda})$  or  $\text{PSL}_2(\mathbf{F}_{\lambda})$ . We may also say that  $\bar{\rho}_{f,\lambda}^{\text{proj}}$  is exceptional.

**Remark 1.** Recall that by Dickson's classification, if  $\bar{\rho}_{f,\lambda}$  is both irreducible and exceptional, then the image must be either dihedral or isomorphic to  $A_4$ ,  $S_4$ , or  $A_5$ .

Thus Ribet's theorem states that if f does not have CM, then it has only finitely many exceptional primes. The following theorem was proved by Dieulefait–Wiese.

**Theorem 1.** (See [4, Theorem 6.2].) There exist eigenforms  $(f_n)_{n \in \mathbb{N}}$  of weight 2 such that

- (1) for all n the eigenform  $f_n$  has no exceptional primes, and
- (2) for a fixed prime  $\ell$ , the size of the image of  $\bar{\rho}_{f_n,\lambda_n}$  for  $\lambda_n \triangleleft \mathcal{O}_{f_n}$  is unbounded for running n.

**Remark 2.** The eigenforms  $f_n$  in Theorem 1 have some additional technical properties. First, they do not have CM, which is a necessary condition. Second, they have no nontrivial inner twists; this is important for their application to the inverse Galois problem in [4]. While the modular forms which we construct in Theorem 2 also enjoy these properties, we will not mention them for the sake of brevity and ease of exposition.

In this paper, we modify the arguments of [4] to obtain a version of Theorem 1 for eigenforms of general even weight  $k \ge 2$ . The main result of this paper is the following.

**Theorem 2.** Let  $k \ge 2$  be an even integer. There exist eigenforms  $(f_n)_{n \in \mathbb{N}}$  of weight k such that

Download English Version:

## https://daneshyari.com/en/article/4593270

Download Persian Version:

https://daneshyari.com/article/4593270

Daneshyari.com