

Contents lists available at ScienceDirect

Journal of Number Theory

Class numbers of quadratic Diophantine equations

Liang Sun

School of Mathematical Sciences, Capital Normal University, 105 Xisanhuanbeilu, 100048 Beijing, China

ARTICLE INFO

Article history:
Received 6 July 2015
Received in revised form 19 January 2016
Accepted 9 February 2016
Available online 1 April 2016
Communicated by David Goss

MSC: 11E12 11E41

Keywords: Class number Mass formula

ABSTRACT

In this paper, the class number of a quadratic Diophantine equation is defined so that it can be viewed as a measure of the obstruction of the local-global principal for quadratic Diophantine equations, and we also give a method for computing the class number of quadratic Diophantine equations by using the mass formula.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The arithmetic theory of quadratic forms is a classical topic and has been extensively studied by various methods. It is a natural question to extend such theory to more general inhomogeneous quadratic polynomials. Such generalization has already been considered by van der Blij in [15], Kneser in [5] and Watson in [16]. Recently, for various purposes, this topic was picked up by Shimura in [9], Sun in [13], Colliot-Thélène and Xu in [2], Wei and Xu in [17] and Chan and Oh in [1] and so on. In this paper, we give a method

E-mail address: xiaosunliang@163.com.

for computing the class number of inhomogeneous quadratic polynomials by using the mass formula.

Notation and terminology are standard. Let F be an algebraic number field, O_F be the ring of integers of F and Ω_F be the set of all non-trivial primes on F. For each $p \in \Omega_F$, F_p is the completion of F at p. Denote ∞_F as the set of all archimedean primes on F and $p < \infty_F$ for $p \in \Omega_F \setminus \infty_F$. For each $p < \infty_F$, we let O_{F_p} stand for the valuation ring of F_p and $O_{F_p}^{\times}$ for the group of units. Write $O_{F_p} = F_p$ for $p \in \infty_F$. Let \mathbf{A}_F be the adèle group of F equipped with its restricted product topology.

An n-ary non-degenerate quadratic Diophantine equation in the variables x_1, \dots, x_n over F is an inhomogeneous quadratic polynomial of the form

$$f(\mathbf{x}) = \sum_{1 \le i, j \le n} a_{ij} x_i x_j + \sum_{i=1}^n b_i x_i + c \quad (a_{ij} = a_{ji})$$

with coefficients a_{ij} , b_i and c in F for all $1 \le i, j \le n$ and $det(a_{ij})_{1 \le i, j \le n} \ne 0$.

Two n-ary non-degenerate quadratic Diophantine equations $f(\mathbf{x})$ and $g(\mathbf{y})$ over F are called equivalent over O_F if there is an affine transformation over O_F

$$\mathbf{y} = A\mathbf{x} + \beta$$

with $A \in GL_n(O_F)$ and $\beta \in O_F^n$ such that $f(\mathbf{x}) = g(A\mathbf{x} + \beta)$ and denoted by $f(\mathbf{x}) \sim_{O_F} g(\mathbf{y})$. One can generalize the concept of genus and class of quadratic forms to quadratic Diophantine equations.

Definition 1.1. The genus of a quadratic Diophantine equation $f(\mathbf{x})$ over F is defined as

$$gen(f(\mathbf{x})) = \{g(\mathbf{y}) : g(\mathbf{y}) \sim_{O_{F_n}} f(\mathbf{x}) \text{ for all } p < \infty_F\}.$$

The class of a quadratic Diophantine equation $f(\mathbf{x})$ over F is defined as

$$cls(f(\mathbf{x})) = \{g(\mathbf{y}) : g(\mathbf{y}) \sim_{O_F} f(\mathbf{x})\}.$$

The number of classes in $gen(f(\mathbf{x}))$ is called the class number of $f(\mathbf{x})$.

One can formulate the above concepts in more intrinsic language and more general setting.

Let V be a non-degenerate n-dimensional quadratic space over F with the symmetric bilinear map

$$B: V \times V \longrightarrow F$$
 with $q(x) = B(x, x)$

for any $x \in V$ and the special orthogonal group

Download English Version:

https://daneshyari.com/en/article/4593272

Download Persian Version:

https://daneshyari.com/article/4593272

<u>Daneshyari.com</u>