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Text. Adler, Keane, and Smorodinsky showed that if one 
concatenates the finite continued fraction expansions of the 
sequence of rationals
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into an infinite continued fraction expansion, then this new 
number is normal with respect to the continued fraction 
expansion. We show a variety of new constructions of 
continued fraction normal numbers, including one generated 
by the subsequence of rationals with prime numerators and 
denominators:
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Video. For a video summary of this paper, please visit 
https://youtu.be/L7uyAQ7hS74.
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1. Introduction

A number x ∈ [0, 1) is said to be normal (to base 10) if for any string s =
[d1, d2, . . . , dk] of decimal digits, we have

lim
N→∞

As(N ;x)
N

= 1
10k ,

where As(N ; x) is the number of times the string s appears starting in the first N digits 
of the decimal expansion of x. For numbers outside of the interval [0, 1), we consider them 
to be normal if the number taken modulo 1 is normal. While it is a simple consequence 
of the pointwise ergodic theorem that almost all real numbers are normal, there is no 
commonly used irrational number, such as π, e, or even 

√
2, that is known to be normal.

However, mathematicians have constructed a wide variety of normal numbers, the 
first of which was found by Champernowne: he showed that the number

0.123456789101112131415 . . . ,

formed by concatenating all the natural numbers in order, is normal [4]. Following Cham-
pernowne, Besicovitch showed that the number

0.149162536496481100 . . . ,

formed by taking all the perfect squares in order, is normal [2]. These constructions 
inspired a large area of research, as mathematicians considered for which functions f(n)
would the number

0.f(1)f(2)f(3) . . .

be normal. A related question asks whether just concatenating the prime values of a 
function,

0.f(2)f(3)f(5)f(7)f(11) . . . ,

also generates a normal number. A small selection of all the results in this area include 
the work of Davenport and Erdős [7]; Nakai and Shiokawa [14]; De Koninck and Kátai [8]; 
Madritsch, Thuswaldner, and Tichy [13]; and the author [20].

Of particular interest to this paper is the work of Copeland and Erdős [5]. They 
showed that almost all integers are (ε, k)-normal, which refers to the fact that each 
string of length k appears in the decimal expansion of the integer to within ε of the 
expected frequency 10−k. Thus, in place of the sequence of all positive integers, as in 
Champernowne, if we take a sufficiently dense subset of the positive integers and con-
catenate those, we expect to get a number that is normal as well. Copeland and Erdős 
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