ELSEVIER

Discriminants of cyclic cubic orders

Jun Ho Lee ${ }^{\text {a }}$, Stéphane R. Louboutin ${ }^{\text {b,*, }}{ }^{1}$
${ }^{\text {a }}$ Department of Mathematics Education, Mokpo National University, 1666,
Yeongsan-ro, Cheonggye-myeon, Muan-gun, Jeonnam 58554, Republic of Korea
${ }^{\text {b }}$ Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453
Marseille, France

A R T I C L E I N F O

Article history:

Received 7 December 2015
Received in revised form 22 March 2016
Accepted 12 April 2016
Available online 2 June 2016
Communicated by M. Pohst

$M S C$:

11R16
11R29
Keywords:
Cubic field
Quartic field
Module
Basis
Discriminant

Abstract

Let α be a cubic algebraic integer. Assume that the cubic number field $\mathbb{Q}(\alpha)$ is Galois. Let α_{1}, α_{2} and α_{3} be the real conjugates of α. We give an explicit \mathbb{Z}-basis and the discriminant of the $\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$-invariant totally real cubic order $\mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]$. This new result is completely different from the one previously obtained in the case that the cubic field $\mathbb{Q}(\alpha)$ is not Galois.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let

$$
\Pi_{\alpha}(X)=X^{3}-a X^{2}+b X-c \in \mathbb{Z}[X]
$$

[^0]http://dx.doi.org/10.1016/j.jnt.2016.04.015
0022-314X/© 2016 Elsevier Inc. All rights reserved.
be the minimal polynomial of a cubic algebraic integer α. Let α_{1}, α_{2} and α_{3} be the complex conjugates of α, i.e. the complex roots of $\Pi_{\alpha}(X)$. Then
$$
\Omega_{3}=\left\{1, \alpha_{1}, \alpha_{1}^{2}, \alpha_{2}, \alpha_{2} \alpha_{1}, \alpha_{2} \alpha_{1}^{2}\right\}
$$
is a \mathbb{Z}-generating system of the order $\mathbb{M}_{3}=\mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]$ (see [LL14, LEMMA 4.4]). Moreover, assume that the cubic number field $\mathbb{K}=\mathbb{Q}(\alpha)$ is not Galois. Then its normal closure $\mathbb{N}=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is a sextic number field with Galois group isomorphic to the symmetric group $\mathfrak{S}_{3}, \Omega_{3}$ is a \mathbb{Z}-basis of the $\operatorname{Gal}(\mathbb{N} / \mathbb{Q})$-invariant sextic order $\mathbb{M}_{3}=$ $\mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]$ and the discriminant $d_{\mathbb{M}_{3}}$ of \mathbb{M}_{3} is given by $d_{\mathbb{M}_{3}}=d_{\alpha}^{3}$, where $0 \neq d_{\alpha} \in \mathbb{Z}$ is the discriminant of $\Pi_{\alpha}(X)$ (see [LL14, Lemma 8.1]). More generally, we have (see [Lou16]):

Theorem 1. Let α be an algebraic integer of degree $n \geq 2$. Let $0 \neq d_{\alpha} \in \mathbb{Z}$ be the discriminant of its minimal polynomial $\Pi_{\alpha}(X) \in \mathbb{Z}[X]$. Let $\alpha_{1}, \cdots, \alpha_{n}$ be the complex conjugates of α, i.e. the complex roots of $\Pi_{\alpha}(X)$. Then $\Omega_{n}:=\left\{\alpha_{1}^{e_{1}} \cdots \alpha_{n}^{e_{n}} ; 0 \leq\right.$ $\left.e_{k} \leq n-k\right\}$ is a \mathbb{Z}-generating system of the order $\mathbb{M}_{n}:=\mathbb{Z}\left[\alpha_{1}, \cdots, \alpha_{n}\right]$. Moreover, if $\operatorname{Gal}\left(\mathbb{Q}\left(\alpha_{1}, \cdots, \alpha_{n}\right) / \mathbb{Q}\right)$ is isomorphic to the symmetric group \mathfrak{S}_{n}, then \mathbb{M}_{n} is a free \mathbb{Z}-module of rank n !, of \mathbb{Z}-basis Ω_{n} and of discriminant $D_{\mathbb{M}_{n}}=D_{\alpha}^{n!/ 2}$.

The aim of this paper is to show that, surprisingly, obtaining such a result for Galois number fields seems much more difficult. We will deal with the simplest Galois case: we assume that the number field $\mathbb{K}=\mathbb{Q}(\alpha)$ is cubic Galois, hence cyclic. Clearly, $\mathbb{M}_{3}=$ $\mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]$ is a free \mathbb{Z}-module of rank 3 . We determine a \mathbb{Z}-basis and the discriminant $d_{\mathbb{M}_{3}}$ of this $\operatorname{Gal}(\mathbb{K} / \mathbb{Q})$-invariant cubic order \mathbb{M}_{3}, solving the problem raised in [LL14, Section 8.4]:

Theorem 2. Let $\Pi_{\alpha}(X)=X^{3}-a X^{2}+b X-c \in \mathbb{Z}[X]$ be the minimal polynomial of a cubic algebraic integer α. Assume that the cubic number field $\mathbb{K}=\mathbb{Q}(\alpha)$ is Galois, i.e. assume that the discriminant $d_{\alpha}=-4 a^{3} c-4 b^{3}+a^{2} b^{2}+18 a b c-27 c^{2}$ of $\Pi_{\alpha}(X)$ is a perfect square, say $d_{\alpha}=D^{2}, D \in \mathbb{Z}$. Let α_{1}, α_{2} and α_{3} be the three complex conjugates of α, i.e. the three complex roots of $\Pi_{\alpha}(X)$. Set

$$
\Delta=\operatorname{gcd}\left(D, 3 b-a^{2}, 3 a c-b^{2}\right)
$$

Let $x, y, z \in \mathbb{Z}$ be such that

$$
\Delta=x D+y\left(3 b-a^{2}\right)+z\left(3 a c-b^{2}\right)
$$

and set

$$
\begin{equation*}
\eta=x \alpha_{1}^{2}+y \alpha_{2}+z \alpha_{2} \alpha_{1}^{2} \tag{1}
\end{equation*}
$$

Then $\left\{1, \alpha_{1}, \eta\right\}$ is a \mathbb{Z}-basis of the $\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$-invariant order $\mathbb{M}_{3}=\mathbb{Z}\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]$ and $d_{\mathbb{M}_{3}}=\Delta^{2}$ divides d_{α}.

https://daneshyari.com/en/article/4593295

Download Persian Version:

https://daneshyari.com/article/4593295

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: junho@mokpo.ac.kr (J.H. Lee), stephane.louboutin@univ-amu.fr (S.R. Louboutin).
 ${ }^{1}$ Postal address: Institut de Mathématiques de Marseille, Aix Marseille Université, 163 Avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France.

