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The Delannoy numbers and Schröder numbers are given by
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respectively. Let p > 3 be a prime. We mainly prove that

p−1∑
k=1

DkSk ≡ 2p3Bp−3 − 2pH∗
p−1 (mod p4),

where Bn is the n-th Bernoulli number and these H∗
n are the 

alternating harmonic numbers given by H∗
n =

∑n
k=1

(−1)k
k

. 
This supercongruence was originally conjectured by Z.-W. Sun 
in 2011.
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1. Introduction

In combinatorics, the n-th Delannoy number describes the number of paths from (0, 0)
to (n, n), using only steps (1, 0), (0, 1) and (1, 1), while n-th Schröder number represents 
the number of such paths that do not rise above the line y = x. It is known that
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Z.-W. Sun [8,9] have proved some amazing arithmetic properties of Delannoy numbers 
and Schröder numbers. For example, he showed that for any odd prime p,
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where 
(
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denotes the Legendre symbol and En is the n-th Euler number. In 2011, 

Z.-W. Sun [8] also raised some interesting conjectures involving these numbers, one of 
which was

Conjecture 1.1. Let p > 3 be a prime. Then

p−1∑
k=1

DkSk ≡ −2p
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k=1

(−1)k + 3
k

(mod p4). (1.1)

Define the following two polynomials:
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Note that Dn(x−1
2 ) coincides with the Legendre polynomial Pn(x). Recently, Guo [4]

proved that for any prime p and integer x satisfying p � x(x + 1),

p−1∑
k=0

(2k + 1)Dk(x)3 ≡ p

(
−4x− 3

p

)
(mod p2),

p−1∑
k=0

(2k + 1)Dk(x)4 ≡ p (mod p2),

and thus confirmed some conjectures of Z.-W. Sun [9].
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