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In this paper, we give q-analogies of classical Kummer, Lucas 
and ASH (Anton, Stickelberger, Hensel)’s results on binomial 
coefficients modulo primes. Our results generalize the previous 
result by T. Cai (2001) [1].
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1. Introduction

The binomial coefficients are very important in mathematics. Their congruence prop-
erties were studied by many mathematicians.

In 1852 Kummer discovered an elegant result on binomial coefficients:
Kummer’s criteria: Let n ≥ m ≥ 0 be integers and p be any prime. The exact power of 

p dividing the binomial coefficient 
(
n
m

)
is given by the number of “carries” when adding 

m and n −m in base p.
In the following, we define 

(
n
m

)
= 1 if m = 0 and 0 if neither n ≥ m ≥ 0 nor m = 0.

In 1878 Lucas proved the following famous result.
Lucas’ result: Let n ≥ m ≥ 0 be integers and p be a prime. Let n =

∑d
i=0 nip

i and 
m =

∑d
i=0 mip

i with 0 ≤ ni, mi ≤ p − 1 be their expansions in base p. Then we have

(
n

m

)
≡

d∏
i=0

(
ni

mi

)
(mod p). (1)

Lucas’ result was originally written in his Theorie des Nombres (pp. 417–420).
The following result was discovered by each of Anton (1869), Stickelberger (1890), 

Hensel (1902) and many others since.
ASH’s result: Let n ≥ m ≥ 0 be integers and p be a prime. Assume pt exactly 

divides
(
n
m

)
. Denote l = n −m. Let n =

∑d
i=0 nip

i, m =
∑d

i=0 mip
i and l =

∑d
i=0 lip

i

with 0 ≤ ni, mi, li ≤ p − 1 be their expansions in base p. Then

1
pt

(
n

m

)
≡ (−1)t

(
n0!

m0!l0!

)(
n1!

m1!l1!

)
· · ·

(
nd!

md!ld!

)
(mod p).

All of the above results can be found in Granville’s nice paper [4], which also gives 
many interesting properties on the binomial coefficients modulo prime powers and his-
torical reviews.

To state our results, we introduce some standard notations first.
Let

[n]q = 1 − qn

1 − q
,

[n]q! = [n]q · [n− 1]q · · · [1]q,

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1)

be the q-bracket, the q-factorial, and the q-Pochhammer symbol, respectively, where n
is a positive integer. Clearly, letting q → 1, then [n]q → n and [n]q! → n!.

Let the Gaussian binomial coefficients be
(
n

m

)
q

= [n]q!
[m]q![n−m]q!

= (1 − q)(1 − q2) · · · (1 − qn−1)(1 − qn)
(1 − q) · · · (1 − qm)(1 − q) · · · (1 − qn−m) ,
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