Bivariate polynomial mappings associated with simple complex Lie algebras

Ömer Küçüksakallı
Middle East Technical University, Mathematics Department, 06800 Ankara, Turkey

A R T I C L E I N F O

Article history:

Received 26 January 2016
Received in revised form 16 April
2016
Accepted 16 April 2016
Available online 2 June 2016
Communicated by David Goss

MSC:

11 T06

Keywords:
Chebyshev polynomial
Dickson polynomial
Lie algebra
Weyl group
Integrable mapping
Exceptional polynomial
Schur's problem

Abstract

There are three families of bivariate polynomial maps associated with the rank- 2 simple complex Lie algebras $A_{2}, B_{2} \cong C_{2}$ and G_{2}. It is known that the bivariate polynomial map associated with A_{2} induces a permutation of \mathbf{F}_{q}^{2} if and only if $\operatorname{gcd}\left(k, q^{s}-1\right)=1$ for $s=1,2,3$. In this paper, we give similar criteria for the other two families. As an application, a counterexample is given to a conjecture posed by Lidl and Wells about the generalized Schur's problem.

© 2016 Elsevier Inc. All rights reserved.

0. Introduction

A polynomial map $f: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ of degree greater than one is called integrable if there exists a polynomial map $g: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ of degree greater than one such that f and g commute, i.e. $f \circ g=g \circ f$, and the set of iterations of f and g are disjoint. Integrable maps

[^0]play an important role in the theory of dynamical systems because they show an unusual degree of symmetry [Ve91]. In the case $n=1$, a full description of integrable polynomials was given by Julia [Ju22], Fatou [Fa24] and Ritt [Ri23]. An integrable polynomial map $f: \mathbf{C} \rightarrow \mathbf{C}$ can be transformed by a linear change of variables to the form $f=z^{n}$ or $f= \pm T_{n}(z)$, where $T_{n}(z)=\cos (n \arccos z)$ is the Chebyshev polynomial.

There is a question in the theory of finite fields which has a similar answer. A polynomial $f(x) \in \mathbf{Z}[x]$ is called exceptional if $f(x)$ induces a permutation of an infinite number of finite fields \mathbf{F}_{p} where p is prime. It is well known that a polynomial is exceptional if and only if it is a composition of linear polynomials, power maps and the Chebyshev polynomials. One side of this statement is relatively easier to prove since the k th power map and the k th Chebyshev polynomial induce a permutation of \mathbf{F}_{q} if and only if $\operatorname{gcd}(k, q-1)=1$ and $\operatorname{gcd}\left(k, q^{2}-1\right)=1$, respectively [LN83]. The other side of this classification is known as Schur's problem and proved by Fried [Fr70]. Other proofs have been given by Turnwald [Tu95] and Müller [Mü97].

Let $\mathbf{P}^{1}(\mathbf{C})$ be the projective space of dimension one. Apart from the power maps and Chebyshev polynomials, there is one more family of rational maps on $\mathbf{P}^{1}(\mathbf{C})$ which satisfies the commuting relation $f \circ g=g \circ f$ [Ri23]. It is the family of Lattès maps induced by isogenies of an elliptic curve E. In our previous work [Kü14], using the underlying elliptic curve group structure, we gave a criterion when a Lattès map induces a permutation of $\mathbf{P}^{1}\left(\mathbf{F}_{q}\right)$. In the theory of dynamical systems, especially in its arithmetical aspects, the underlying algebraic structure plays an important role. For example, see Silverman [Si07].

In this paper, we pay attention to the bivariate polynomial mappings associated with the rank-2 simple complex Lie algebras. We fix some notation first. Let \mathfrak{g} be a complex Lie algebra of rank n and \mathfrak{h} its Cartan subalgebra, \mathfrak{h}^{*} its dual space, \mathcal{L} a lattice of weights in \mathfrak{h}^{*} generated by the fundamental weights $\omega_{1}, \ldots, \omega_{n}$, and L the dual lattice in \mathfrak{h}. Veselov defines the mapping $\Phi_{\mathfrak{g}}: \mathfrak{h} / L \rightarrow \mathbf{C}^{n}, \Phi_{\mathfrak{g}}\left(\varphi_{1}, \ldots, \varphi_{n}\right)$,

$$
\varphi_{k}=\sum_{w \in W} e^{2 \pi i w\left(\omega_{k}\right)}
$$

where W is the Weyl group, acting on the space \mathfrak{h}^{*}. Veselov shows that there exist a family of polynomial mappings associated with each simple complex Lie algebra with nice dynamical properties. Hofmann and Withers give the same result independently somewhat later.

Theorem 0.1 ([Ve87,HW88]). With each simple complex Lie algebra of rank n, there is an associated infinite series of integrable polynomial mappings $P_{\mathfrak{g}}^{k}$, determined from the conditions

$$
\Phi_{\mathfrak{g}}(k \mathbf{x})=P_{\mathfrak{g}}^{k}\left(\Phi_{\mathfrak{g}}(\mathbf{x})\right)
$$

All coefficients of the polynomials defining $P_{\mathfrak{g}}^{k}$ are integers.

https://daneshyari.com/en/article/4593317

Download Persian Version:
https://daneshyari.com/article/4593317

Daneshyari.com

[^0]: E-mail address: komer@metu.edu.tr.

