

Contents lists available at ScienceDirect

Journal of Number Theory

On a divisibility relation for Lucas sequences

Yuri F. Bilu ^{a,1}, Takao Komatsu ^{b,2}, Florian Luca ^c, Amalia Pizarro-Madariaga ^{d,*,3}, Pantelimon Stănică ^{e,4}

- a IMB, Université Bordeaux 1 & CNRS, 351 cours de la Libération, 33405 Talence, France
- ^b School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
- ^c School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa
- ^d Instituto de Matemáticas, Universidad de Valparaíso, Chile
- ^e Naval Postgraduate School, Applied Mathematics Department, Monterey, CA 93943-5216, USA

ARTICLE INFO

ABSTRACT

Article history:
Received 9 October 2015
Received in revised form 24
November 2015
Accepted 26 November 2015
Available online 8 January 2016
Communicated by Steven J. Miller

MSC: 11B39

Keywords: Lucas sequence Roots of unity In this note, we study the divisibility relation $U_m \mid U_{n+k}^s - U_n^s$, where $\mathbf{U} := \{U_n\}_{n \geq 0}$ is the Lucas sequence of characteristic polynomial $x^2 - ax \pm 1$ and k, m, n, s are positive integers. © 2016 Elsevier Inc. All rights reserved.

E-mail addresses: yuri@math.u-bordeaux.fr (Yu.F. Bilu), komatsu@whu.edu.cn (T. Komatsu), florian.luca@wits.ac.za (F. Luca), amalia.pizarro@uv.cl (A. Pizarro-Madariaga), pstanica@nps.edu (P. Stănică).

^{*} Corresponding author.

¹ Partially supported by the Max-Planck Institut für Mathematik.

 $^{^{2}\,}$ Partially supported by the Hubei provincial Expert Program in China.

 $^{^3}$ Partially supported by the Project DIUV-REG N° 25-2013.

 $^{^4}$ Also associated to the Institute of Mathematics "Simion Stoilow" of the Romanian Academy, Bucharest, Romania.

1. Introduction

Let $\mathbf{U} := \mathbf{U}(a,b) = \{U_n\}_{n>0}$ be the Lucas sequence given by $U_0 = 0, U_1 = 1$ and

$$U_{n+2} = aU_{n+1} + bU_n$$
 for all $n \ge 0$, where $b \in \{\pm 1\}$. (1)

Its characteristic equation is $x^2 - ax - b = 0$ with roots

$$(\alpha, \beta) = \left(\frac{a + \sqrt{a^2 + 4b}}{2}, \frac{a - \sqrt{a^2 + 4b}}{2}\right). \tag{2}$$

When $a \ge 1$, we have that $\alpha > 1 > |\beta|$. We assume that $\Delta = a^2 + 4b > 0$ and that α/β is not a root of unity. This only excludes the pairs $(a,b) \in \{(0,\pm 1), (\pm 1,-1), (2,-1)\}$ from the subsequent considerations. Here, we look at the relation

$$U_m \mid U_{n+k}^s - U_n^s, \tag{3}$$

with positive integers k, m, n, s. Note that when (a, b) = (1, 1), then $U_n = F_n$ is the nth Fibonacci number. Taking k = 1 and using the relations

$$F_{n+1} - F_n = F_{n-1},$$

 $F_{n+1} + F_n = F_{n+2},$
 $F_{n+1}^2 + F_n^2 = F_{2n+1},$

it follows that relation (3) holds with s = 1, 2, 4, and m = n-1, n+1, 2n+1, respectively. Further, in [2], the authors assumed that m and n are coprime positive integers. In this case, F_n and F_m are coprime, so the rational number F_{n+1}/F_n is defined modulo F_m . Then it was shown in [2] that if this last congruence class above has multiplicative order s modulo F_m and $s \notin \{1, 2, 4\}$, then

$$m < 500s^2. (4)$$

In this paper, we study the general divisibility relation (3) and prove the following result.

Theorem 1. Let a be a non-zero integer, $b \in \{\pm 1\}$, and k a positive integer. Assume that $(a,b) \notin \{(\pm 1,-1), (\pm 2,-1)\}$. Given a positive integer m, let s be the smallest positive integer such that divisibility (3) holds. Then either $s \in \{1,2,4\}$, or

$$m < 20000(sk)^2. (5)$$

Download English Version:

https://daneshyari.com/en/article/4593326

Download Persian Version:

https://daneshyari.com/article/4593326

<u>Daneshyari.com</u>