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We prove that, for every rational d �= 0, ±1 and every compact 
set K ⊂ {s ∈ C : 1/2 < Re(s) < 1} with connected 
complement, any analytic non-vanishing functions f1, f2 on K
can be approximated, uniformly on K, by the shifts ζ(s + iτ)
and ζ(s + idτ), respectively. As a consequence we deduce that 
the set of τ satisfying |ζ(s + iτ) − ζ(s + idτ)| < ε uniformly 
on K has a positive lower density for every d �= 0.
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1. Introduction

In 1981 Bagchi [1] discovered an interesting connection between the Riemann Hypoth-
esis and Voronin’s universality theorem (see [18]) for the Riemann zeta function ζ(s). 
Namely, he proved that ζ(s) �= 0 for Re(s) > 1

2 if and only if for every compact set 
K ⊂ {s ∈ C : 1

2 < Re(s) < 1} with connected complement and every ε > 0 we have

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζ(s + iτ) − ζ(s)| < ε

}
> 0, (1)

where meas{·} denotes the real Lebesgue measure. In the language of topological dynam-
ics (see [6]) (1) is called the strong recurrence property for the Riemann zeta function.

Bagchi’s observation was extended to the case of Dirichlet L-functions by himself in 
[2] and [3], and to the case of general universal L-functions, for which the Generalized 
Riemann Hypothesis is expected, in [17, Theorem 8.4].

Nakamura [10] suggested the following related problem: find all d such that for every 
compact set K ⊂ {s ∈ C : 1

2 < Re(s) < 1} with connected complement and every ε > 0
we have

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζ(s + iτ) − ζ(s + idτ)| < ε

}
> 0. (2)

This property can be called generalized strong recurrence with parameter d. However, it 
should be noted that sometimes in the literature it is called also the self-approximation 
property with parameter d. Using this notion Bagchi’s result states that the Riemann 
Hypothesis is equivalent to the generalized strong recurrence property for ζ(s) with 
parameter d = 0.

Nakamura, in the same paper, gave the partial answer to this question by proving 
that (2) holds if d is algebraic irrational. He also observed that the generalized strong 
recurrence property holds for almost all real parameters d. His result was improved by 
the author in [13] to all irrational parameter d. The positive answer for non-zero rational 
d was claimed by Garunkštis [5] and Nakamura [11]. Unfortunately, their arguments have 
a gap, which was pointed out by Nakamura and Pańkowski [12] and partially filled, in 
the same paper, for all non-zero rational d = a

b with gcd(a, b) = 1 and |a − b| �= 1.
The crucial step in the proof of the generalized strong recurrence property with pa-

rameter d is to show that the following set

{log p : p is prime} ∪ {d log p : p is prime} (3)

is linearly independent over Q. This was proved for all algebraic irrational d and for 
almost all d by Nakamura [10]. Moreover, by using the six exponential theorem from the 
theory of transcendental numbers, the author noticed in [13] that for a given irrational 
d only a finite number of primes p can possibly be involved in the linear dependence 
of (3). This allowed to prove the following joint universality theorem, which easily implies 
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