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We improve several recent results by Hong, Lee, Lee and 
Park (2012) on gaps and Bzdȩga (2014) on jumps amongst 
the coefficients of cyclotomic polynomials. Besides direct im-
provements, we also introduce several new techniques that 
have never been used in this area.
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1. Introduction

As usual, for an integer n ≥ 1, we use Φn(Z) to denote the nth cyclotomic polynomial, 
that is,

Φn(Z) =
n−1∏
j=0

gcd(j,n)=1

(Z − en(j)) ,

where for an integer m ≥ 1 and a real z, we put

em(z) = exp(2πiz/m).

Clearly deg Φn = ϕ(n), where ϕ(n) is the Euler function. Using the above definition one 
sees that

Zn − 1 =
∏
d|n

Φd(Z). (1.1)

The Möbius inversion formula then yields

Φn(Z) =
∏
d|n

(Zd − 1)μ(n/d), (1.2)

where μ(n) denotes the Möbius function.
We write

Φn(Z) =
ϕ(n)∑
k=0

an(k)Zk.

For n > 1 clearly Zϕ(n)Φn(1/Z) = Φn(Z) and so

an(k) = an(ϕ(n) − k), 0 ≤ k ≤ ϕ(n), n > 1. (1.3)

Recently, there has been a burst of activity in studying the cyclotomic coefficients an(k), 
see, for example, [3–6,10,15,17–19,31,35] and references therein. Furthermore, in several 
works inverse cyclotomic polynomials

Ψn(Z) = (Zn − 1)/Φn(Z)

have also been considered, see [7,21–23,29].
The identities Φ2n(Z) = Φn(−Z), with n > 1 odd and Φpm(Z) = Φm(Zp) if p | m, 

show that, as far as the study of coefficients is concerned, the complexity of Φn(Z)
is determined by its number of distinct odd prime factors. Most of the recent activity 
concerns the so-called binary and ternary cyclotomic polynomials, which are polynomials 
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