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1. Introduction

Let 8 > 1 be a real number and T : [0,1) — [0, 1) be the S-transformation defined
as

Ts(z) = Pa — | Ba],

where |x| denotes the greatest integer not exceeding x. Then every x € [0,1) can be
uniquely expanded into a finite or infinite series, i.e.,

5t +---+5%(f>+-~-, (1.1)
where 1(z) = [Bz] and e, 41(x) = e1(T§x) for alln > 1. We call the representation (1.1)
the (-expansion of x denoted by (£1(z),e2(x), -+ ,en(x), -+ ) and e, (x),n > 1 the digits
of 2. Such an expansion was first introduced by Rényi [27], who proved that there exists
a unique Tg-invariant measure equivalent to the Lebesgue measure P when 3 is not an
integer; while it is known that the Lebesgue measure is Tg-invariant when /3 is an integer.
Furthermore, Gel’fond [12] and Parry [24] independently found the density formula for
this invariant measure with respect to (w.r.t.) the Lebesgue measure. The arithmetic
and metric properties of S-expansion were studied extensively in the literature, such as
[2,6,9,11,14,18,19,28,29] and the references therein.

Now we turn our attention to continued fraction expansions. Let T : [0,1) — [0, 1)
be the Gauss transformation given by

1 1
L H if 2 € (0,1);
T x

0, if x =0.

Tx =

Then any real number x € [0,1) can be written as

1

an(z) +

where a1(z) = |1/z] and apy1(x) = a1(T™x) for all n > 1. The form (1.2) is said
to be the continued fraction expansion of x and ay,(x), n > 1 are called the partial

quotients of z. Sometimes we write the form (1.2) as [a1(2), az(z),- - ,an(x),---]. For

any n > 1, we denote by Z"—Eg = [a1(2), az(x), -, an(x)] the n-th convergent of x, where

pn(x) and g, (x) are relatively prime. Clearly these convergents are rational numbers and
Pn(x)/qn(x) — x as n — oo for all z € [0,1). More precisely,



Download English Version:

https://daneshyari.com/en/article/4593346

Download Persian Version:

https://daneshyari.com/article/4593346

Daneshyari.com


https://daneshyari.com/en/article/4593346
https://daneshyari.com/article/4593346
https://daneshyari.com

